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Average Joe Programmer

• Joe is oblivious about the processor
– Moore’s law bring Joe performance 
– Sufficient for Joe’s requirements

• Joe has built a solid boundary between 
Hardware and Software
– High level languages abstract away the processors

– Ex: Java bytecode is machine independent 

• This abstraction has provided a lot of freedom for Joe

• Parallel Programming is only 
practiced by a few experts
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Squandering of the 
Moore’s Dividend

• 10,000x performance gain in 30 years! (~46% per year)
• Where did this performance go?
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Squandering of the 
Moore’s Dividend

• 10,000x performance gain in 30 years! (~46% per year)
• Where did this performance go?
• Last decade we concentrated on correctness and 

programmer productivity
• Little to no emphasis on performance 
• This is reflected in:

– Languages
– Tools
– Research
– Education

• Software Engineering: Only engineering discipline where 
performance or efficiency is not a central theme 
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Matrix Multiply 

• Abstraction and Software Engineering
– Immutable Types
– Dynamic Dispatch
– Object Oriented

• High Level Languages
• Memory Management

– Transpose for unit stride
– Tile for cache locality

• Vectorization
• Prefetching
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Matrix Multiply 

• Typical Software 
Engineering Approach
– In Java
– Object oriented
– Immutable
– Abstract types
– No memory optimizations
– No parallelization

• Good Performance 
Engineering Approach
In C/Assembly
Memory optimized (blocked)
BLAS libraries
Parallelized (to 4 cores)
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Performance and Parallelism

• No more automatic performance gains
àPerformance has to come from somewhere else

– Better languages
– Disciplined programming
– Performance engineering
– Plus…
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Performance and Parallelism

• No more automatic performance gains
àPerformance has to come from somewhere else

– Better languages
– Disciplined programming
– Performance engineering
– Plus…

• Parallelism
– Moore’s low morphed from providing performance to 

providing parallelism
– But…Parallelism IS performance 
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Joe the Parallel Programmer

• Moore’s law is not bringing 
anymore performance gains

• If Joe needs performance 
he has to deal with 
multicores
– Joe has to deal with 

performance
– Joe has to deal with 

parallelism

12
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Can Joe Handle This?

Today

Programmer is oblivious 
to performance.
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Can Joe Handle This?

Today

Programmer is oblivious 
to performance.

13

Current Trajectory 
Programmer 
handles parallelism 
and performance 
turning

Better Trajectory 
Programmer 
handles 
concurrency. 
Compiler finds best 
parallel mapping 
and optimize for 
performance
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Conquering the Multicore Menace 
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• Parallelism Extraction
– The world is parallel, 

but most computer science is based in sequential thinking
– Parallel Languages

– Natural way to describe the maximal concurrency in the problem

– Parallel Thinking
– Theory, Algorithms, Data Structures à Education
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• Parallelism Extraction
– The world is parallel, 

but most computer science is based in sequential thinking
– Parallel Languages

– Natural way to describe the maximal concurrency in the problem

– Parallel Thinking
– Theory, Algorithms, Data Structures à Education

• Parallelism Management
– Mapping algorithmic parallelism to a given architecture
– Find the best performance possible
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In the mean time…….the experts practicing 

• They needed to get the last ounce of the performance 
from hardware

• They had problems that are too big or too hard
• They worked on the biggest

newest machines
• Porting the software to take

advantage of the latest hardware 
features 

• Spending years (lifetimes) on
a specific kernel

16
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Lifetime of Software >> Hardware

• Lifetime of a software application is 30+ years

• Lifetime of a computer system is less than 6 years
• New hardware every 3 years

• Multiple Ports
• “Software Quality deteriorates 

in each port
• Huge problem for these expert programmers

17
Tuesday, October 25, 2011



Not a problem for Joe
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Future Proofing Software

• No single machine model anymore
– Between different processor types
– Between different generation within the same family 

• Programs need to be written-once and use 
anywhere, anytime
– Java did it for portability 
– We need to do it for performance 

19
Tuesday, October 25, 2011



n To be an effective language that can future-proof programs
n Restrict the choices when a property is hard to automate or constant 

across architectures of current and future     à expose to the user
n Features that are automatable and variable à hide from the user
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Ancient Days…

• Computers had limited power
• Compiling was a daunting task
• Languages helped by limiting choice
• Overconstraint  programming 

languages that express only a single 
choice of:
– Algorithm
– Iteration order 
– Data layout
– Parallelism strategy
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…as we progressed….

• Computers got faster
• More cycles available to the 

compiler
• Wanted to optimize the programs, to 

make them run better and faster
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…and we ended up at

• Computers are extremely powerful
• Compilers want to do a lot
• But…the same old overconstraint 

languages
– They don’t provide too many choices 

• Heroic analysis to rediscover some 
of the choices

– Data dependence analysis 
– Data flow analysis
– Alias analysis
– Shape analysis
– Interprocedural analysis
– Loop analysis
– Parallelization analysis
– Information flow analysis
– Escape analysis
– …
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Need to Rethink Languages

• Give Compiler a Choice 
– Express ‘intent’ not ‘a method’
– Be as verbose as you can

• Muscle outpaces brain
– Compute cycles are abundant 
– Complex logic is too hard
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Observation 1: Algorithmic Choice
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Observation 1: Algorithmic Choice

• For many problems there are multiple algorithms 
– Most cases there is no single winner
– An algorithm will be the best performing for a given:

– Input size
– Amount of parallelism
– Communication bandwidth / synchronization cost
– Data layout
– Data itself (sparse data, convergence criteria etc.)
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– Data layout
– Data itself (sparse data, convergence criteria etc.)

• Multicores exposes many of these to the programmer
– Exponential growth of cores (impact of Moore’s law)
– Wide variation of memory systems, type of cores etc.

• No single algorithm can be the best for all the cases
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Observation 2: Natural Parallelism 
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• World is a parallel place
– It is natural to many, e.g. mathematicians

– ∑,  sets, simultaneous equations, etc.
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– It is natural to many, e.g. mathematicians

– ∑,  sets, simultaneous equations, etc.

• It seems that computer scientists have a hard time thinking 
in parallel
– We have unnecessarily imposed sequential ordering on the world

– Statements executed in sequence 
– for i= 1 to n
– Recursive decomposition (given f(n) find f(n+1))

• This was useful at one time to limit the complexity…. 
But a big problem in the era of multicores
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Observation 3: Autotuning
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Observation 3: Autotuning

• Good old days à model based optimization
• Now

– Machines are too complex 
to accurately model

– Compiler passes have 
many subtle interactions

– Thousands of knobs and 
billions of choices 

Algorithmic Complexity

Compiler Complexity

Memory System Complexity

Processor Complexity
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Observation 3: Autotuning

• Good old days à model based optimization
• Now

– Machines are too complex 
to accurately model

– Compiler passes have 
many subtle interactions

– Thousands of knobs and 
billions of choices 

• But…
– Computers are cheap
– We can do end-to-end execution of multiple runs 
– Then use machine learning to find the best choice

Algorithmic Complexity

Compiler Complexity

Memory System Complexity

Processor Complexity
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PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c] 
to AB[w,h]
{
    // Base case, compute a single element
    to(AB.cell(x,y) out) 
    from(A.row(y) a, B.column(x) b) {
        out = dot(a, b);
  }
}
  

• Implicitly parallel 
description

31
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{
    // Base case, compute a single element
    to(AB.cell(x,y) out) 
    from(A.row(y) a, B.column(x) b) {
        out = dot(a, b);
  }
}
  

• Implicitly parallel 
description
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PetaBricks Language
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PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c] 
to AB[w,h]
{
    // Base case, compute a single element
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        out = dot(a, b);
  }
}
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PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c] 
to AB[w,h]
{
    // Base case, compute a single element
    to(AB.cell(x,y) out) 
    from(A.row(y) a, B.column(x) b) {
        out = dot(a, b);
  }
}
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PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c] 
to AB[w,h]
{
    // Base case, compute a single element
    to(AB.cell(x,y) out) 
    from(A.row(y) a, B.column(x) b) {
        out = dot(a, b);
  }
}
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description
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PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c] 
to AB[w,h]
{
    // Base case, compute a single element
    to(AB.cell(x,y) out) 
    from(A.row(y) a, B.column(x) b) {
        out = dot(a, b);
  }
}
  

• Implicitly parallel 
description
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PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c] 
to AB[w,h]
{
    // Base case, compute a single element
    to(AB.cell(x,y) out) 
    from(A.row(y) a, B.column(x) b) {
        out = dot(a, b);
  }

  // Recursively decompose in c
  to(AB ab)
  from(A.region(0,   0, c/2, h  )  a1,
           A.region(c/2, 0, c,   h  )  a2,
           B.region(0,   0, w,   c/2)  b1,
           B.region(0, c/2, w,   c  )  b2) {
    ab = MatrixAdd(MatrixMultiply(a1, b1),
                              MatrixMultiply(a2, b2));
  }
  

• Implicitly parallel 
description

• Algorithmic choice
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PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c] 
to AB[w,h]
{
    // Base case, compute a single element
    to(AB.cell(x,y) out) 
    from(A.row(y) a, B.column(x) b) {
        out = dot(a, b);
  }

  // Recursively decompose in c
  to(AB ab)
  from(A.region(0,   0, c/2, h  )  a1,
           A.region(c/2, 0, c,   h  )  a2,
           B.region(0,   0, w,   c/2)  b1,
           B.region(0, c/2, w,   c  )  b2) {
    ab = MatrixAdd(MatrixMultiply(a1, b1),
                              MatrixMultiply(a2, b2));
  }
  

 // Recursively decompose in w
  to(AB.region(0,   0, w/2, h  )   ab1,
       AB.region(w/2, 0, w,   h  )  ab2)
  from( A a,
            B.region(0,   0, w/2, c  )   b1,
            B.region(w/2, 0, w,   c  )  b2) {
    ab1 = MatrixMultiply(a, b1);
    ab2 = MatrixMultiply(a, b2);
  }

  

33

a

B

ABAB

b2b1

ab1 ab2

Tuesday, October 25, 2011



PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c] 
to AB[w,h]
{
    // Base case, compute a single element
    to(AB.cell(x,y) out) 
    from(A.row(y) a, B.column(x) b) {
        out = dot(a, b);
  }

  // Recursively decompose in c
  to(AB ab)
  from(A.region(0,   0, c/2, h  )  a1,
           A.region(c/2, 0, c,   h  )  a2,
           B.region(0,   0, w,   c/2)  b1,
           B.region(0, c/2, w,   c  )  b2) {
    ab = MatrixAdd(MatrixMultiply(a1, b1),
                              MatrixMultiply(a2, b2));
  }
  

 // Recursively decompose in w
  to(AB.region(0,   0, w/2, h  )   ab1,
       AB.region(w/2, 0, w,   h  )  ab2)
  from( A a,
            B.region(0,   0, w/2, c  )   b1,
            B.region(w/2, 0, w,   c  )  b2) {
    ab1 = MatrixMultiply(a, b1);
    ab2 = MatrixMultiply(a, b2);
  }

  // Recursively decompose in h
  to(AB.region(0, 0,   w, h/2)   ab1,
       AB.region(0, h/2, w, h  )   ab2)
  from(A.region(0,   0, c,   h/2)  a1,
           A.region(0, h/2, c,   h  )  a2,
           B b) {
    ab1=MatrixMultiply(a1, b);
    ab2=MatrixMultiply(a2, b);
  }
}
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PetaBricks Language

transform Strassen
from A11[n,n], A12[n,n], A21[n,n], A22[n,n],
     B11[n,n], B12[n,n], B21[n,n], B22[n,n]
through M1[n,n], M2[n,n], M3[n,n], M4[n,n], M5[n,n], M6[n,n], M7[n,n]
to   C11[n,n], C12[n,n], C21[n,n], C22[n,n]
{
  to(M1 m1) from(A11 a11, A22 a22, B11 b11, B22 b22) using(t1[n,n], t2
[n,n]) {
    MatrixAdd(t1, a11, a22);
    MatrixAdd(t2, b11, b22);
    MatrixMultiplySqr(m1, t1, t2);
  }
  to(M2 m2) from(A21 a21, A22 a22, B11 b11) using(t1[n,n]) {
    MatrixAdd(t1, a21, a22);
    MatrixMultiplySqr(m2, t1, b11);
  }
  to(M3 m3) from(A11 a11, B12 b12, B22 b22) using(t1[n,n]) {
    MatrixSub(t2, b12, b22);
    MatrixMultiplySqr(m3, a11, t2);
  }  

  to(M4 m4) from(A22 a22, B21 b21, B11 b11) using(t1[n,n]) {
    MatrixSub(t2, b21, b11);
    MatrixMultiplySqr(m4, a22, t2);
  }
  to(M5 m5) from(A11 a11, A12 a12, B22 b22) using(t1[n,n]) {
    MatrixAdd(t1, a11, a12);
    MatrixMultiplySqr(m5, t1, b22);
  }

  to(M6 m6) from(A21 a21, A11 a11, B11 b11, B12 b12) 
using(t1[n,n], t2[n,n]) {
    MatrixSub(t1, a21, a11);
    MatrixAdd(t2, b11, b12);
    MatrixMultiplySqr(m6, t1, t2);
  }
  to(M7 m7) from(A12 a12, A22 a22, B21 b21, B22 b22) 
using(t1[n,n], t2[n,n]) {
    MatrixSub(t1, a12, a22);
    MatrixAdd(t2, b21, b22);
    MatrixMultiplySqr(m7, t1, t2);
  }
  
  to(C11 c11) from(M1 m1, M4 m4, M5 m5, M7 m7){
    MatrixAddAddSub(c11, m1, m4, m7, m5);
  }
  to(C12 c12) from(M3 m3, M5 m5){
    MatrixAdd(c12, m3, m5);
  }
  to(C21 c21) from(M2 m2, M4 m4){
    MatrixAdd(c21, m2, m4);
  }
  to(C22 c22) from(M1 m1, M2 m2, M3 m3, M6 m6){
    MatrixAddAddSub(c22, m1, m3, m6, m2);
  }
}
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Language Support for 
Algorithmic Choice

• Algorithmic choice is the key aspect of PetaBricks

• Programmer can define multiple rules to compute the 

same data

• Compiler re-use rules to create hybrid algorithms

• Can express choices at many different granularities

36
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Synthesized Outer Control Flow
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Synthesized Outer Control Flow

• Outer control flow synthesized by compiler
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Synthesized Outer Control Flow

• Outer control flow synthesized by compiler
• Another choice that the programmer should 

not make
By rows?
By columns?
Diagonal? Reverse order? Blocked?
Parallel?

37
Tuesday, October 25, 2011



Synthesized Outer Control Flow

• Outer control flow synthesized by compiler
• Another choice that the programmer should 

not make
By rows?
By columns?
Diagonal? Reverse order? Blocked?
Parallel?

• Instead programmer provides explicit 
producer-consumer relations
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Synthesized Outer Control Flow

• Outer control flow synthesized by compiler
• Another choice that the programmer should 

not make
By rows?
By columns?
Diagonal? Reverse order? Blocked?
Parallel?

• Instead programmer provides explicit 
producer-consumer relations

• Allows compiler to explore choice space
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Outline

• The Three Side Stories
– Performance and Parallelism with Multicores
– Future Proofing Software
– Evolution of Programming Languages

• Three Observations
• PetaBricks 

– Language
– Compiler
– Results
– Variable Precision
– Sibling Rivalry
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Another Example
transform RollingSum
from A[n]
to B[n]
{
 // rule 0: use the previously computed value
 B.cell(i) from (A.cell(i) a, B.cell(i-1) leftSum) {
  return a + leftSum;
 }

 // rule 1: sum all elements to the left
 B.cell(i) from (A.region(0, i) in) {
  return sum(in);
 }
}
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Another Example
transform RollingSum
from A[n]
to B[n]
{
 // rule 0: use the previously computed value
 B.cell(i) from (A.cell(i) a, B.cell(i-1) leftSum) {
  return a + leftSum;
 }

 // rule 1: sum all elements to the left
 B.cell(i) from (A.region(0, i) in) {
  return sum(in);
 }
}

40

A

B

Tuesday, October 25, 2011



Another Example
transform RollingSum
from A[n]
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Another Example
transform RollingSum
from A[n]
to B[n]
{
 // rule 0: use the previously computed value
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Another Example
transform RollingSum
from A[n]
to B[n]
{
 // rule 0: use the previously computed value
 B.cell(i) from (A.cell(i) a, B.cell(i-1) leftSum) {
  return a + leftSum;
 }

 // rule 1: sum all elements to the left
 B.cell(i) from (A.region(0, i) in) {
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Compilation Process

• Applicable Regions
• Choice Grids
• Choice Dependency Graphs

42
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Applicable Regions

 // rule 0: use the previously computed value
 B.cell(i) from (A.cell(i) a, B.cell(i-1) leftSum) {
  return a + leftSum;
 }
Applicable Region:  1 ≤ i < n

 // rule 1: sum all elements to the left
 B.cell(i) from (A.region(0, i) in) {
  return sum(in);
 }
Applicable Region:  0 ≤ i < n

43
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Choice Grids

• Divide data space into symbolic regions with 
common sets of choices

• In this simple example:
– A: Input (no choices)
– B: [0; 1) = rule 1
– B: [1; n) = rule 0 or rule 1

• Applicable regions map rules à symbolic data
• Choice grids map symbolic data à rules
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Choice Dependency Graphs

• Adds dependency edges between symbolic regions
• Edges annotated with directions and rules
• Many compiler passes on this IR to:

– Simplify complex dependency patterns
– Add choices
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PetaBricks Flow

1. PetaBricks source code is 
compiled

2. An autotuning binary is 
created

3. Autotuning occurs creating 
a choice configuration file

4. Choices are fed back into 
the compiler to create a 
static binary
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Autotuning

• Based on two building blocks:
– A genetic tuner
– An n-ary search algorithm

• Flat parameter space
• Compiler generates a dependency graph 

describing this parameter space
• Entire program tuned from bottom up
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Outline

• The Three Side Stories
– Performance and Parallelism with Multicores
– Future Proofing Software
– Evolution of Programming Languages

• Three Observations
• PetaBricks 

– Language
– Compiler
– Results
– Variable Precision
– Sibling Rivalry
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Sort
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Sort
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Algorithmic Choice in Sorting

51
Tuesday, October 25, 2011



Algorithmic Choice in Sorting
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Algorithmic Choice in Sorting
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Algorithmic Choice in Sorting
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Algorithmic Choice in Sorting
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Future Proofing Sort

56

SystemSystem Cores 
used Scalability Algorithm Choices 

(w/ switching points)

Mobile Core 2 Duo 
Mobile 

2 of 2 1.92 IS(150) 8MS(600) 4MS(1295) 2MS
(38400) QS(∞)

Xeon 
1-way

Xeon E7340 
(2 x 4 core) 

1 of 8 - IS(75) 4MS(98) RS(∞)

Xeon 
8-way 

Xeon E7340 
(2 x 4 core) 

8 of 8 5.69 IS(600) QS(1420) 2MS(∞)

Niagara Sun Fire 
T200

8 of 8 7.79 16MS(75) 8MS(1461) 4MS(2400) 
2MS(∞)
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Future Proofing Sort

57

SystemSystem Cores 
used Scalability Algorithm Choices 

(w/ switching points)

Mobile Core 2 Duo 
Mobile 

2 of 2 1.92 IS(150) 8MS(600) 4MS(1295) 2MS
(38400) QS(∞)

Xeon 
1-way

Xeon E7340 
(2 x 4 core) 

1 of 8 - IS(75) 4MS(98) RS(∞)

Xeon 
8-way 

Xeon E7340 
(2 x 4 core) 

8 of 8 5.69 IS(600) QS(1420) 2MS(∞)

Niagara Sun Fire 
T200

8 of 8 7.79 16MS(75) 8MS(1461) 4MS(2400) 
2MS(∞)

Trained OnTrained OnTrained OnTrained On
Mobile Xeon 1-way Xeon 8-way Niagara

Run 
On

Mobile - 1.09x 1.67x 1.47xRun 
On Xeon 1-way 1.61x - 2.08x 2.50x
Run 
On

Xeon 8-way 1.59x 2.14x - 2.35x

Run 
On

Niagara 1.12x 1.51x 1.08x -
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Matrix Multiply

58

Size

Ti
m

e

Tuesday, October 25, 2011



Matrix Multiply
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Eigenvector Solve
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Eigenvector Solve
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Outline

• The Three Side Stories
– Performance and Parallelism with Multicores
– Future Proofing Software
– Evolution of Programming Languages

• Three Observations
• PetaBricks 

– Language
– Compiler
– Results
– Variable Precision
– Sibling Rivalry
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Variable Accuracy Algorithms
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Variable Accuracy Algorithms

• Lots of algorithms where the accuracy of output 
can be tuned:
– Iterative algorithms (e.g. solvers, optimization)
– Signal processing (e.g. images, sound)
– Approximation algorithms

• Can trade accuracy for speed

• All user wants:  Solve to a certain accuracy as 
fast as possible using whatever algorithms 
necessary!
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A Very Brief Multigrid Intro
• Used to iteratively solve PDEs over a gridded domain
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A Very Brief Multigrid Intro
• Used to iteratively solve PDEs over a gridded domain
• Relaxations update points using neighboring values 

(stencil computations)
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coarser or finer discretization
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A Very Brief Multigrid Intro
• Used to iteratively solve PDEs over a gridded domain
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(stencil computations)
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A Very Brief Multigrid Intro
• Used to iteratively solve PDEs over a gridded domain
• Relaxations update points using neighboring values 

(stencil computations)
• Restrictions and Interpolations compute new grid with 

coarser or finer discretization
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Multigrid Cycles

65

Standard  Approaches

V-Cycle W-Cycle

Full MG V-Cycle

Tuesday, October 25, 2011



Multigrid Cycles
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Multigrid Cycles
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Multigrid Cycles

65

Standard  Approaches

Relaxation operator?

How many iterations?

How coarse do we go?

V-Cycle W-Cycle

Full MG V-Cycle
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Multigrid Cycles

• Generalize the idea of what a multigrid cycle can 
look like

• Example:

• Goal: Auto-tune cycle shape for specific usage

66

direct or iterative shortcut

relaxation
steps
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Algorithmic Choice in Multigrid

• Need framework to make fair comparisons
• Perspective of a specific grid resolution
• How to get from A to B?

67

A B

Direct

Iterative

A B

Recursive
A B

?
Restrict Interpolate
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Algorithmic Choice in Multigrid

• Tuning cycle shape!
– Examples of recursive options:

68

Standard V-cycle

A B
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Algorithmic Choice in Multigrid

• Tuning cycle shape!
– Examples of recursive options:
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Take a shortcut at a coarser resolution

A BA B
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Algorithmic Choice in Multigrid

• Tuning cycle shape!
– Examples of recursive options:

70

Iterating with shortcuts
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Algorithmic Choice in Multigrid

• Number of iterations depends on what accuracy 
we want at the current grid resolution!

71

• Tuning cycle shape!
– Once we pick a recursive option, how many times do 

we iterate?

A B C D

Higher Accuracy
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Optimal Subproblems
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Optimal Subproblems

72
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• Plot all cycle shapes for a given grid resolution:

• Idea: Maintain a family of optimal algorithms for 
each grid resolution

Optimal Subproblems

72

Keep only the
optimal ones!

Tuesday, October 25, 2011



The Discrete Solution
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• Problem: Too many optimal cycle shapes to 
remember

• Solution: Remember the fastest algorithms for a 
discrete set of accuracies

The Discrete Solution
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• Problem: Too many optimal cycle shapes to 
remember

• Solution: Remember the fastest algorithms for a 
discrete set of accuracies

The Discrete Solution

73

Remember!
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Use Dynamic Programming

• Only search cycle shapes that utilize optimized 
sub-cycles in recursive calls

• Build optimized algorithms from the bottom up
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Use Dynamic Programming

• Only search cycle shapes that utilize optimized 
sub-cycles in recursive calls

• Build optimized algorithms from the bottom up

• Allow shortcuts to stop recursion early
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Use Dynamic Programming

• Only search cycle shapes that utilize optimized 
sub-cycles in recursive calls

• Build optimized algorithms from the bottom up

• Allow shortcuts to stop recursion early
• Allow multiple iterations of sub-cycles to explore 

time vs. accuracy space
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transform Multigridk
from X[n,n], B[n,n]
to Y[n,n]
{
    // Base case
    // Direct solve

        OR

    // Base case
    // Iterative solve at current resolution

          OR

    // Recursive case
    // For some number of iterations
        // Relax
        // Compute residual and restrict
        // Call Multigridi for some i
        // Interpolate and correct
        // Relax
}

Auto-tuning the V-cycle

• Algorithmic choice
Shortcut base cases
Recursively call some 
optimized sub-cycle

• Iterations and 
recursive accuracy 
let us explore 
accuracy versus 
performance space

• Only remember 
“best” versions
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transform Multigridk
from X[n,n], B[n,n]
to Y[n,n]
{
    // Base case
    // Direct solve

        OR

    // Base case
    // Iterative solve at current resolution

          OR

    // Recursive case
    // For some number of iterations
        // Relax
        // Compute residual and restrict
        // Call Multigridi for some i
        // Interpolate and correct
        // Relax
}

Auto-tuning the V-cycle

• Algorithmic choice
Shortcut base cases
Recursively call some 
optimized sub-cycle

• Iterations and 
recursive accuracy 
let us explore 
accuracy versus 
performance space

• Only remember 
“best” versions
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Variable Accuracy Keywords
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Variable Accuracy Keywords
• accuracy_variable – tunable variable
• accuracy_metric – returns accuracy of output
• accuracy_bins – set of discrete accuracy bins
• generator – creates random inputs for accuracy 

measurement

76

transform Multigridk
from X[n,n], B[n,n]
to Y[n,n]
accuracy_variable numIterations
accuracy_metric Poisson2D_metric
accuracy_bins 1e1 1e3 1e5 1e7
generator Poisson2D_Generator

Tuesday, October 25, 2011



Training the Discrete Solution
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Example: Auto-tuned 2D
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Auto-tuned Cycles for
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Poisson
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Binpacking – Algorithmic Choices
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Outline

• The Three Side Stories
– Performance and Parallelism with Multicores
– Future Proofing Software
– Evolution of Programming Languages

• Three Observations
• PetaBricks 

– Language
– Compiler
– Results
– Variable Precision
– Sibling Rivalry
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Issues with Offline Tuning

• Offline-tuning workflow burdensome
– Programs often not re-autotuned when they should be

– e.g. apt-get install fftw does not re-autotune

– Hardware upgrades / large deployments
– Transparent migration in the cloud

• Can't adapt to dynamic conditions
– System load
– Input types
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SiblingRivalry: an Online Approach

• Split available resources in half
• Process identical requests on both halves 
• Race two candidate configurations (safe and experimental) 

and terminate slower algorithm
• Initial slowdown (from duplicating the request) can be 

overcome by autotuner
• Surprisingly, reduces average power consumption per 

request
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Experimental Setup
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SiblingRivalry: throughput
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SiblingRivalry: energy usage 
(on AMD48)
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Conclusion
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Conclusion

• Time has come for languages based on autotuning 

• Convergence of multiple forces
– The Multicore Menace
– Future proofing when machine models are changing
– Use more muscle (compute cycles) than brain (human cycles)

• PetaBricks – We showed that it can be done!

• Will programmers accept this model?
– A little more work now to save a lot later
– Complexities in testing, verification and validation
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