
PetaBricks: A Language and
Compiler based on Autotuning

Saman Amarasinghe
Joint work with

Jason Ansel, Marek Olszewski
Cy Chan, Yee Lok Wong, Maciej Pacula

Una-May O’Reilly and Alan Edelman

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Tuesday, October 25, 2011

Outline

• The Three Side Stories
– Performance and Parallelism with Multicores
– Future Proofing Software
– Evolution of Programming Languages

• Three Observations
• PetaBricks

– Language
– Compiler
– Results
– Variable Precision
– Sibling Rivalry

2
Tuesday, October 25, 2011

Today: The Happily Oblivious
Average Joe Programmer

3
Tuesday, October 25, 2011

Today: The Happily Oblivious
Average Joe Programmer

• Joe is oblivious about the processor
– Moore’s law bring Joe performance
– Sufficient for Joe’s requirements

3
Tuesday, October 25, 2011

Today: The Happily Oblivious
Average Joe Programmer

• Joe is oblivious about the processor
– Moore’s law bring Joe performance
– Sufficient for Joe’s requirements

• Joe has built a solid boundary between
Hardware and Software
– High level languages abstract away the processors

– Ex: Java bytecode is machine independent

3
Tuesday, October 25, 2011

Today: The Happily Oblivious
Average Joe Programmer

• Joe is oblivious about the processor
– Moore’s law bring Joe performance
– Sufficient for Joe’s requirements

• Joe has built a solid boundary between
Hardware and Software
– High level languages abstract away the processors

– Ex: Java bytecode is machine independent

• This abstraction has provided a lot of freedom for Joe

3
Tuesday, October 25, 2011

Today: The Happily Oblivious
Average Joe Programmer

• Joe is oblivious about the processor
– Moore’s law bring Joe performance
– Sufficient for Joe’s requirements

• Joe has built a solid boundary between
Hardware and Software
– High level languages abstract away the processors

– Ex: Java bytecode is machine independent

• This abstraction has provided a lot of freedom for Joe

3
Tuesday, October 25, 2011

Today: The Happily Oblivious
Average Joe Programmer

• Joe is oblivious about the processor
– Moore’s law bring Joe performance
– Sufficient for Joe’s requirements

• Joe has built a solid boundary between
Hardware and Software
– High level languages abstract away the processors

– Ex: Java bytecode is machine independent

• This abstraction has provided a lot of freedom for Joe

3
Tuesday, October 25, 2011

Today: The Happily Oblivious
Average Joe Programmer

• Joe is oblivious about the processor
– Moore’s law bring Joe performance
– Sufficient for Joe’s requirements

• Joe has built a solid boundary between
Hardware and Software
– High level languages abstract away the processors

– Ex: Java bytecode is machine independent

• This abstraction has provided a lot of freedom for Joe

• Parallel Programming is only
practiced by a few experts

3
Tuesday, October 25, 2011

4

0.1000

1.0000

10.0000

100.0000

1000.0000

10000.0000

100000.0000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

P
er

fo
rm

an
ce

 (v
s.

 V
A

X
-1

1/
78

0)

25%/

52%/

??%/

8086

286

386

486

Pentium
P2

P3
P4

Itanium
Itanium 2

Moore’s Law

From David Patterson

1,000,000,000

100,000

10,000

1,000,000

10,000,000

100,000,000

From Hennessy and Patterson, Computer Architecture:
A Quantitative Approach, 4th edition, 2006

N
um

ber of Transistors

Tuesday, October 25, 2011

5

8086

286

386

486

Pentium
P2

P3
P4

Itanium
Itanium 2

0.1000

1.0000

10.0000

100.0000

1000.0000

10000.0000

100000.0000

19781980198219841986198819901992199419961998200020022004200620082010201220142016

P
er

fo
rm

an
ce

 (v
s.

 V
A

X
-1

1/
78

0)

25%/

52%/

Uniprocessor Performance
(SPECint)

From David Patterson

1,000,000,000

100,000

10,000

1,000,000

10,000,000

100,000,000

From Hennessy and Patterson, Computer Architecture:
A Quantitative Approach, 4th edition, 2006

N
um

ber of Transistors

Tuesday, October 25, 2011

Squandering of the
Moore’s Dividend

• 10,000x performance gain in 30 years! (~46% per year)
• Where did this performance go?

6
Tuesday, October 25, 2011

Squandering of the
Moore’s Dividend

• 10,000x performance gain in 30 years! (~46% per year)
• Where did this performance go?
• Last decade we concentrated on correctness and

programmer productivity

6
Tuesday, October 25, 2011

Squandering of the
Moore’s Dividend

• 10,000x performance gain in 30 years! (~46% per year)
• Where did this performance go?
• Last decade we concentrated on correctness and

programmer productivity
• Little to no emphasis on performance

6
Tuesday, October 25, 2011

Squandering of the
Moore’s Dividend

• 10,000x performance gain in 30 years! (~46% per year)
• Where did this performance go?
• Last decade we concentrated on correctness and

programmer productivity
• Little to no emphasis on performance
• This is reflected in:

– Languages
– Tools
– Research
– Education

6
Tuesday, October 25, 2011

Squandering of the
Moore’s Dividend

• 10,000x performance gain in 30 years! (~46% per year)
• Where did this performance go?
• Last decade we concentrated on correctness and

programmer productivity
• Little to no emphasis on performance
• This is reflected in:

– Languages
– Tools
– Research
– Education

• Software Engineering: Only engineering discipline where
performance or efficiency is not a central theme

6
Tuesday, October 25, 2011

Matrix Multiply

• Abstraction and Software Engineering
– Immutable Types
– Dynamic Dispatch
– Object Oriented

• High Level Languages
• Memory Management

– Transpose for unit stride
– Tile for cache locality

• Vectorization
• Prefetching

Tuesday, October 25, 2011

Matrix Multiply

• Abstraction and Software Engineering
– Immutable Types
– Dynamic Dispatch
– Object Oriented

• High Level Languages
• Memory Management

– Transpose for unit stride
– Tile for cache locality

• Vectorization
• Prefetching
• Parallelization

Tuesday, October 25, 2011

Matrix Multiply

• Abstraction and Software Engineering
– Immutable Types
– Dynamic Dispatch
– Object Oriented

• High Level Languages
• Memory Management

– Transpose for unit stride
– Tile for cache locality

• Vectorization
• Prefetching
• Parallelization

220x

Tuesday, October 25, 2011

Matrix Multiply

• Abstraction and Software Engineering
– Immutable Types
– Dynamic Dispatch
– Object Oriented

• High Level Languages
• Memory Management

– Transpose for unit stride
– Tile for cache locality

• Vectorization
• Prefetching
• Parallelization

522x

Tuesday, October 25, 2011

Matrix Multiply

• Abstraction and Software Engineering
– Immutable Types
– Dynamic Dispatch
– Object Oriented

• High Level Languages
• Memory Management

– Transpose for unit stride
– Tile for cache locality

• Vectorization
• Prefetching
• Parallelization

1,117x

Tuesday, October 25, 2011

Matrix Multiply

• Abstraction and Software Engineering
– Immutable Types
– Dynamic Dispatch
– Object Oriented

• High Level Languages
• Memory Management

– Transpose for unit stride
– Tile for cache locality

• Vectorization
• Prefetching
• Parallelization

1,117x

Tuesday, October 25, 2011

Matrix Multiply

• Abstraction and Software Engineering
– Immutable Types
– Dynamic Dispatch
– Object Oriented

• High Level Languages
• Memory Management

– Transpose for unit stride
– Tile for cache locality

• Vectorization
• Prefetching
• Parallelization

2,271x

Tuesday, October 25, 2011

Matrix Multiply

• Abstraction and Software Engineering
– Immutable Types
– Dynamic Dispatch
– Object Oriented

• High Level Languages
• Memory Management

– Transpose for unit stride
– Tile for cache locality

• Vectorization
• Prefetching
• Parallelization

7,514x

Tuesday, October 25, 2011

Matrix Multiply

• Abstraction and Software Engineering
– Immutable Types
– Dynamic Dispatch
– Object Oriented

• High Level Languages
• Memory Management

– Transpose for unit stride
– Tile for cache locality

• Vectorization
• Prefetching
• Parallelization

12,316x

Tuesday, October 25, 2011

Matrix Multiply

• Abstraction and Software Engineering
– Immutable Types
– Dynamic Dispatch
– Object Oriented

• High Level Languages
• Memory Management

– Transpose for unit stride
– Tile for cache locality

• Vectorization
• Prefetching
• Parallelization

33,453x

Tuesday, October 25, 2011

Matrix Multiply

• Abstraction and Software Engineering
– Immutable Types
– Dynamic Dispatch
– Object Oriented

• High Level Languages
• Memory Management

– Transpose for unit stride
– Tile for cache locality

• Vectorization
• Prefetching
• Parallelization

87,042x

Tuesday, October 25, 2011

Matrix Multiply

• Abstraction and Software Engineering
– Immutable Types
– Dynamic Dispatch
– Object Oriented

• High Level Languages
• Memory Management

– Transpose for unit stride
– Tile for cache locality

• Vectorization
• Prefetching
• Parallelization

296,260x

Tuesday, October 25, 2011

Matrix Multiply

• Typical Software
Engineering Approach
– In Java
– Object oriented
– Immutable
– Abstract types
– No memory optimizations
– No parallelization

• Good Performance
Engineering Approach
In C/Assembly
Memory optimized (blocked)
BLAS libraries
Parallelized (to 4 cores)

8

296,260x

Tuesday, October 25, 2011

Matrix Multiply

• Typical Software
Engineering Approach
– In Java
– Object oriented
– Immutable
– Abstract types
– No memory optimizations
– No parallelization

• Good Performance
Engineering Approach
In C/Assembly
Memory optimized (blocked)
BLAS libraries
Parallelized (to 4 cores)

8

14,700x

• In Comparison: Lowest to Highest MPG in transportation

296,260x

Tuesday, October 25, 2011

Matrix Multiply

• Typical Software
Engineering Approach
– In Java
– Object oriented
– Immutable
– Abstract types
– No memory optimizations
– No parallelization

• Good Performance
Engineering Approach
In C/Assembly
Memory optimized (blocked)
BLAS libraries
Parallelized (to 4 cores)

8

14,700x

• In Comparison: Lowest to Highest MPG in transportation

296,260x

294,000x

Tuesday, October 25, 2011

9

8086

286

386

486

Pentium
P2

P3
P4

Itanium
Itanium 2

0.1000

1.0000

10.0000

100.0000

1000.0000

10000.0000

100000.0000

19781980198219841986198819901992199419961998200020022004200620082010201220142016

P
er

fo
rm

an
ce

 (v
s.

 V
A

X
-1

1/
78

0)

25%/

52%/

Uniprocessor Performance
(SPECint)

From David Patterson

1,000,000,000

100,000

10,000

1,000,000

10,000,000

100,000,000

From Hennessy and Patterson, Computer Architecture:
A Quantitative Approach, 4th edition, 2006

N
um

ber of Transistors

Tuesday, October 25, 2011

10

8086

286

386

486

Pentium
P2

P3
P4

Itanium
Itanium 2

0.1000

1.0000

10.0000

100.0000

1000.0000

10000.0000

100000.0000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

P
er

fo
rm

an
ce

 (v
s.

 V
A

X
-1

1/
78

0)

25%/

52%/

??%/

Uniprocessor Performance
(SPECint)

From David Patterson

1,000,000,000

100,000

10,000

1,000,000

10,000,000

100,000,000

From Hennessy and Patterson, Computer Architecture:
A Quantitative Approach, 4th edition, 2006

N
um

ber of Transistors

Tuesday, October 25, 2011

Performance and Parallelism

• No more automatic performance gains
àPerformance has to come from somewhere else

– Better languages
– Disciplined programming
– Performance engineering
– Plus…

11
Tuesday, October 25, 2011

Performance and Parallelism

• No more automatic performance gains
àPerformance has to come from somewhere else

– Better languages
– Disciplined programming
– Performance engineering
– Plus…

• Parallelism
– Moore’s low morphed from providing performance to

providing parallelism
– But…Parallelism IS performance

11
Tuesday, October 25, 2011

Joe the Parallel Programmer

• Moore’s law is not bringing
anymore performance gains

• If Joe needs performance
he has to deal with
multicores
– Joe has to deal with

performance
– Joe has to deal with

parallelism

12

Joe

Tuesday, October 25, 2011

Can Joe Handle This?

Today

Programmer is oblivious
to performance.

13
Tuesday, October 25, 2011

Can Joe Handle This?

Today

Programmer is oblivious
to performance.

13

Current Trajectory
Programmer
handles parallelism
and performance
turning

Tuesday, October 25, 2011

Can Joe Handle This?

Today

Programmer is oblivious
to performance.

13

Current Trajectory
Programmer
handles parallelism
and performance
turning

Better Trajectory
Programmer
handles
concurrency.
Compiler finds best
parallel mapping
and optimize for
performance

Tuesday, October 25, 2011

Conquering the Multicore Menace

14
Tuesday, October 25, 2011

Conquering the Multicore Menace

• Parallelism Extraction
– The world is parallel,

but most computer science is based in sequential thinking
– Parallel Languages

– Natural way to describe the maximal concurrency in the problem

– Parallel Thinking
– Theory, Algorithms, Data Structures à Education

14
Tuesday, October 25, 2011

Conquering the Multicore Menace

• Parallelism Extraction
– The world is parallel,

but most computer science is based in sequential thinking
– Parallel Languages

– Natural way to describe the maximal concurrency in the problem

– Parallel Thinking
– Theory, Algorithms, Data Structures à Education

• Parallelism Management
– Mapping algorithmic parallelism to a given architecture
– Find the best performance possible

14
Tuesday, October 25, 2011

Outline

• The Three Side Stories
– Performance and Parallelism with Multicores
– Future Proofing Software
– Evolution of Programming Languages

• Three Observations
• PetaBricks

– Language
– Compiler
– Results
– Variable Precision
– Sibling Rivalry

15
Tuesday, October 25, 2011

In the mean time…….the experts practicing

• They needed to get the last ounce of the performance
from hardware

• They had problems that are too big or too hard
• They worked on the biggest

newest machines
• Porting the software to take

advantage of the latest hardware
features

• Spending years (lifetimes) on
a specific kernel

16
Tuesday, October 25, 2011

Lifetime of Software >> Hardware

• Lifetime of a software application is 30+ years

• Lifetime of a computer system is less than 6 years
• New hardware every 3 years

• Multiple Ports
• “Software Quality deteriorates

in each port
• Huge problem for these expert programmers

17
Tuesday, October 25, 2011

Not a problem for Joe

18

1985 199019801970 1975 1995 2000

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2

2005 20??

of

 c
or

es

1

2

4

8

16

32

64

128
256

512

Athlon

• Moore’s law gains were sufficient
• Targeted the same machine

model from 1070 to now

Tuesday, October 25, 2011

Not a problem for Joe

18

1985 199019801970 1975 1995 2000

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2

2005 20??

of

 c
or

es

1

2

4

8

16

32

64

128
256

512

Athlon

• Moore’s law gains were sufficient
• Targeted the same machine

model from 1070 to now

• New reality: changing machine model

Tuesday, October 25, 2011

Not a problem for Joe

18

1985 199019801970 1975 1995 2000

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2

2005 20??

of

 c
or

es

1

2

4

8

16

32

64

128
256

512

Athlon

• Moore’s law gains were sufficient
• Targeted the same machine

model from 1070 to now

• New reality: changing machine model
• Joe is in the same boat with

the expert programmers

Tuesday, October 25, 2011

Not a problem for Joe

18

1985 199019801970 1975 1995 2000

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2

2005 20??

of

 c
or

es

1

2

4

8

16

32

64

128
256

512

Athlon

Program written in 1970 still works
And is much faster today

• Moore’s law gains were sufficient
• Targeted the same machine

model from 1070 to now

• New reality: changing machine model
• Joe is in the same boat with

the expert programmers

Tuesday, October 25, 2011

Not a problem for Joe

18

1985 199019801970 1975 1995 2000

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2

2005 20??

of

 c
or

es

1

2

4

8

16

32

64

128
256

512

Athlon

Raw

Power4 Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel
Tflops

Xbox360

Cavium
Octeon

Raza
XLR

PA-8800

Cisco
CSR-1

Picochip
PC102

Boardcom 1480 Opteron 4P
Xeon MP

Ambric
AM2045

• Moore’s law gains were sufficient
• Targeted the same machine

model from 1070 to now

• New reality: changing machine model
• Joe is in the same boat with

the expert programmers

Tuesday, October 25, 2011

Future Proofing Software

• No single machine model anymore
– Between different processor types
– Between different generation within the same family

• Programs need to be written-once and use
anywhere, anytime
– Java did it for portability
– We need to do it for performance

19
Tuesday, October 25, 2011

n To be an effective language that can future-proof programs
n Restrict the choices when a property is hard to automate or constant

across architectures of current and future à expose to the user
n Features that are automatable and variable à hide from the user

Languages and Future Proofing

Tuesday, October 25, 2011

n To be an effective language that can future-proof programs
n Restrict the choices when a property is hard to automate or constant

across architectures of current and future à expose to the user
n Features that are automatable and variable à hide from the user

n A lot now
n Expose the architectural details
n Good performance now
n In a local minima
n Will be obsolete soon
n Heroic effort needed to get out
n Ex: MPI

Languages and Future Proofing

Tuesday, October 25, 2011

n To be an effective language that can future-proof programs
n Restrict the choices when a property is hard to automate or constant

across architectures of current and future à expose to the user
n Features that are automatable and variable à hide from the user

n A little forever
n Hide the architectural details
n Good solutions not visible
n Mediocre performance
n But will work forever
n Ex: HPF

n A lot now
n Expose the architectural details
n Good performance now
n In a local minima
n Will be obsolete soon
n Heroic effort needed to get out
n Ex: MPI

Languages and Future Proofing

Tuesday, October 25, 2011

n To be an effective language that can future-proof programs
n Restrict the choices when a property is hard to automate or constant

across architectures of current and future à expose to the user

n A little forever
n Hide the architectural details
n Good solutions not visible
n Mediocre performance
n But will work forever
n Ex: HPF

n A lot now
n Expose the architectural details
n Good performance now
n In a local minima
n Will be obsolete soon
n Heroic effort needed to get out
n Ex: MPI

Languages and Future Proofing

Tuesday, October 25, 2011

n To be an effective language that can future-proof programs
n Restrict the choices when a property is hard to automate or constant

across architectures of current and future à expose to the user
n Features that are automatable and variable à hide from the user

n A little forever
n Hide the architectural details
n Good solutions not visible
n Mediocre performance
n But will work forever
n Ex: HPF

n A lot now
n Expose the architectural details
n Good performance now
n In a local minima
n Will be obsolete soon
n Heroic effort needed to get out
n Ex: MPI

Languages and Future Proofing

Tuesday, October 25, 2011

Outline

• The Three Side Stories
– Performance and Parallelism with Multicores
– Future Proofing Software
– Evolution of Programming Languages

• Three Observations
• PetaBricks

– Language
– Compiler
– Results
– Variable Precision
– Sibling Rivalry

21
Tuesday, October 25, 2011

Ancient Days…

• Computers had limited power
• Compiling was a daunting task
• Languages helped by limiting choice
• Overconstraint programming

languages that express only a single
choice of:
– Algorithm
– Iteration order
– Data layout
– Parallelism strategy

Tuesday, October 25, 2011

…as we progressed….

• Computers got faster
• More cycles available to the

compiler
• Wanted to optimize the programs, to

make them run better and faster

Tuesday, October 25, 2011

…and we ended up at

• Computers are extremely powerful
• Compilers want to do a lot
• But…the same old overconstraint

languages
– They don’t provide too many choices

• Heroic analysis to rediscover some
of the choices

– Data dependence analysis
– Data flow analysis
– Alias analysis
– Shape analysis
– Interprocedural analysis
– Loop analysis
– Parallelization analysis
– Information flow analysis
– Escape analysis
– …

Tuesday, October 25, 2011

Need to Rethink Languages

• Give Compiler a Choice
– Express ‘intent’ not ‘a method’
– Be as verbose as you can

• Muscle outpaces brain
– Compute cycles are abundant
– Complex logic is too hard

Tuesday, October 25, 2011

Outline

• The Three Side Stories
– Performance and Parallelism with Multicores
– Future Proofing Software
– Evolution of Programming Languages

• Three Observations
• PetaBricks

– Language
– Compiler
– Results
– Variable Precision
– Sibling Rivalry

26
Tuesday, October 25, 2011

Observation 1: Algorithmic Choice

27
Tuesday, October 25, 2011

Observation 1: Algorithmic Choice

• For many problems there are multiple algorithms
– Most cases there is no single winner
– An algorithm will be the best performing for a given:

– Input size
– Amount of parallelism
– Communication bandwidth / synchronization cost
– Data layout
– Data itself (sparse data, convergence criteria etc.)

27
Tuesday, October 25, 2011

Observation 1: Algorithmic Choice

• For many problems there are multiple algorithms
– Most cases there is no single winner
– An algorithm will be the best performing for a given:

– Input size
– Amount of parallelism
– Communication bandwidth / synchronization cost
– Data layout
– Data itself (sparse data, convergence criteria etc.)

• Multicores exposes many of these to the programmer
– Exponential growth of cores (impact of Moore’s law)
– Wide variation of memory systems, type of cores etc.

27
Tuesday, October 25, 2011

Observation 1: Algorithmic Choice

• For many problems there are multiple algorithms
– Most cases there is no single winner
– An algorithm will be the best performing for a given:

– Input size
– Amount of parallelism
– Communication bandwidth / synchronization cost
– Data layout
– Data itself (sparse data, convergence criteria etc.)

• Multicores exposes many of these to the programmer
– Exponential growth of cores (impact of Moore’s law)
– Wide variation of memory systems, type of cores etc.

• No single algorithm can be the best for all the cases

27
Tuesday, October 25, 2011

Observation 2: Natural Parallelism

28
Tuesday, October 25, 2011

Observation 2: Natural Parallelism

• World is a parallel place
– It is natural to many, e.g. mathematicians

– ∑, sets, simultaneous equations, etc.

28
Tuesday, October 25, 2011

Observation 2: Natural Parallelism

• World is a parallel place
– It is natural to many, e.g. mathematicians

– ∑, sets, simultaneous equations, etc.

28
Tuesday, October 25, 2011

Observation 2: Natural Parallelism

• World is a parallel place
– It is natural to many, e.g. mathematicians

– ∑, sets, simultaneous equations, etc.

• It seems that computer scientists have a hard time thinking
in parallel
– We have unnecessarily imposed sequential ordering on the world

– Statements executed in sequence
– for i= 1 to n
– Recursive decomposition (given f(n) find f(n+1))

28
Tuesday, October 25, 2011

Observation 2: Natural Parallelism

• World is a parallel place
– It is natural to many, e.g. mathematicians

– ∑, sets, simultaneous equations, etc.

• It seems that computer scientists have a hard time thinking
in parallel
– We have unnecessarily imposed sequential ordering on the world

– Statements executed in sequence
– for i= 1 to n
– Recursive decomposition (given f(n) find f(n+1))

• This was useful at one time to limit the complexity….
But a big problem in the era of multicores

28
Tuesday, October 25, 2011

Observation 3: Autotuning

29
Tuesday, October 25, 2011

Observation 3: Autotuning

• Good old days à model based optimization

29
Tuesday, October 25, 2011

Observation 3: Autotuning

• Good old days à model based optimization
• Now

– Machines are too complex
to accurately model

– Compiler passes have
many subtle interactions

– Thousands of knobs and
billions of choices

Algorithmic Complexity

Compiler Complexity

Memory System Complexity

Processor Complexity

29
Tuesday, October 25, 2011

Observation 3: Autotuning

• Good old days à model based optimization
• Now

– Machines are too complex
to accurately model

– Compiler passes have
many subtle interactions

– Thousands of knobs and
billions of choices

• But…
– Computers are cheap
– We can do end-to-end execution of multiple runs
– Then use machine learning to find the best choice

Algorithmic Complexity

Compiler Complexity

Memory System Complexity

Processor Complexity

29
Tuesday, October 25, 2011

Outline

• The Three Side Stories
– Performance and Parallelism with Multicores
– Future Proofing Software
– Evolution of Programming Languages

• Three Observations
• PetaBricks

– Language
– Compiler
– Results
– Variable Precision
– Sibling Rivalry

30
Tuesday, October 25, 2011

PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c]
to AB[w,h]
{
 // Base case, compute a single element
 to(AB.cell(x,y) out)
 from(A.row(y) a, B.column(x) b) {
 out = dot(a, b);
 }
}

• Implicitly parallel
description

31
Tuesday, October 25, 2011

PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c]
to AB[w,h]
{
 // Base case, compute a single element
 to(AB.cell(x,y) out)
 from(A.row(y) a, B.column(x) b) {
 out = dot(a, b);
 }
}

• Implicitly parallel
description

31

A
c

h

Tuesday, October 25, 2011

PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c]
to AB[w,h]
{
 // Base case, compute a single element
 to(AB.cell(x,y) out)
 from(A.row(y) a, B.column(x) b) {
 out = dot(a, b);
 }
}

• Implicitly parallel
description

31

A

B

w
c

Tuesday, October 25, 2011

PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c]
to AB[w,h]
{
 // Base case, compute a single element
 to(AB.cell(x,y) out)
 from(A.row(y) a, B.column(x) b) {
 out = dot(a, b);
 }
}

• Implicitly parallel
description

31

A

B

AB h
w

Tuesday, October 25, 2011

PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c]
to AB[w,h]
{
 // Base case, compute a single element
 to(AB.cell(x,y) out)
 from(A.row(y) a, B.column(x) b) {
 out = dot(a, b);
 }
}

• Implicitly parallel
description

31

A

B

AB

Tuesday, October 25, 2011

PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c]
to AB[w,h]
{
 // Base case, compute a single element
 to(AB.cell(x,y) out)
 from(A.row(y) a, B.column(x) b) {
 out = dot(a, b);
 }
}

• Implicitly parallel
description

31

A

B

ABAB
y

x

Tuesday, October 25, 2011

PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c]
to AB[w,h]
{
 // Base case, compute a single element
 to(AB.cell(x,y) out)
 from(A.row(y) a, B.column(x) b) {
 out = dot(a, b);
 }
}

• Implicitly parallel
description

31

A

B

ABAB
y

Tuesday, October 25, 2011

PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c]
to AB[w,h]
{
 // Base case, compute a single element
 to(AB.cell(x,y) out)
 from(A.row(y) a, B.column(x) b) {
 out = dot(a, b);
 }
}

• Implicitly parallel
description

31

A

B

ABAB

x

Tuesday, October 25, 2011

PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c]
to AB[w,h]
{
 // Base case, compute a single element
 to(AB.cell(x,y) out)
 from(A.row(y) a, B.column(x) b) {
 out = dot(a, b);
 }
}

• Implicitly parallel
description

31

A

B

ABAB

Tuesday, October 25, 2011

PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c]
to AB[w,h]
{
 // Base case, compute a single element
 to(AB.cell(x,y) out)
 from(A.row(y) a, B.column(x) b) {
 out = dot(a, b);
 }

 // Recursively decompose in c
 to(AB ab)
 from(A.region(0, 0, c/2, h) a1,
 A.region(c/2, 0, c, h) a2,
 B.region(0, 0, w, c/2) b1,
 B.region(0, c/2, w, c) b2) {
 ab = MatrixAdd(MatrixMultiply(a1, b1),
 MatrixMultiply(a2, b2));
 }

• Implicitly parallel
description

• Algorithmic choice

32

A

B

ABABa1 a2 b1

b2

Tuesday, October 25, 2011

PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c]
to AB[w,h]
{
 // Base case, compute a single element
 to(AB.cell(x,y) out)
 from(A.row(y) a, B.column(x) b) {
 out = dot(a, b);
 }

 // Recursively decompose in c
 to(AB ab)
 from(A.region(0, 0, c/2, h) a1,
 A.region(c/2, 0, c, h) a2,
 B.region(0, 0, w, c/2) b1,
 B.region(0, c/2, w, c) b2) {
 ab = MatrixAdd(MatrixMultiply(a1, b1),
 MatrixMultiply(a2, b2));
 }

 // Recursively decompose in w
 to(AB.region(0, 0, w/2, h) ab1,
 AB.region(w/2, 0, w, h) ab2)
 from(A a,
 B.region(0, 0, w/2, c) b1,
 B.region(w/2, 0, w, c) b2) {
 ab1 = MatrixMultiply(a, b1);
 ab2 = MatrixMultiply(a, b2);
 }

33

a

B

ABAB

b2b1

ab1 ab2

Tuesday, October 25, 2011

PetaBricks Language

transform MatrixMultiply
from A[c,h], B[w,c]
to AB[w,h]
{
 // Base case, compute a single element
 to(AB.cell(x,y) out)
 from(A.row(y) a, B.column(x) b) {
 out = dot(a, b);
 }

 // Recursively decompose in c
 to(AB ab)
 from(A.region(0, 0, c/2, h) a1,
 A.region(c/2, 0, c, h) a2,
 B.region(0, 0, w, c/2) b1,
 B.region(0, c/2, w, c) b2) {
 ab = MatrixAdd(MatrixMultiply(a1, b1),
 MatrixMultiply(a2, b2));
 }

 // Recursively decompose in w
 to(AB.region(0, 0, w/2, h) ab1,
 AB.region(w/2, 0, w, h) ab2)
 from(A a,
 B.region(0, 0, w/2, c) b1,
 B.region(w/2, 0, w, c) b2) {
 ab1 = MatrixMultiply(a, b1);
 ab2 = MatrixMultiply(a, b2);
 }

 // Recursively decompose in h
 to(AB.region(0, 0, w, h/2) ab1,
 AB.region(0, h/2, w, h) ab2)
 from(A.region(0, 0, c, h/2) a1,
 A.region(0, h/2, c, h) a2,
 B b) {
 ab1=MatrixMultiply(a1, b);
 ab2=MatrixMultiply(a2, b);
 }
}

34
Tuesday, October 25, 2011

PetaBricks Language

transform Strassen
from A11[n,n], A12[n,n], A21[n,n], A22[n,n],
 B11[n,n], B12[n,n], B21[n,n], B22[n,n]
through M1[n,n], M2[n,n], M3[n,n], M4[n,n], M5[n,n], M6[n,n], M7[n,n]
to C11[n,n], C12[n,n], C21[n,n], C22[n,n]
{
 to(M1 m1) from(A11 a11, A22 a22, B11 b11, B22 b22) using(t1[n,n], t2
[n,n]) {
 MatrixAdd(t1, a11, a22);
 MatrixAdd(t2, b11, b22);
 MatrixMultiplySqr(m1, t1, t2);
 }
 to(M2 m2) from(A21 a21, A22 a22, B11 b11) using(t1[n,n]) {
 MatrixAdd(t1, a21, a22);
 MatrixMultiplySqr(m2, t1, b11);
 }
 to(M3 m3) from(A11 a11, B12 b12, B22 b22) using(t1[n,n]) {
 MatrixSub(t2, b12, b22);
 MatrixMultiplySqr(m3, a11, t2);
 }

 to(M4 m4) from(A22 a22, B21 b21, B11 b11) using(t1[n,n]) {
 MatrixSub(t2, b21, b11);
 MatrixMultiplySqr(m4, a22, t2);
 }
 to(M5 m5) from(A11 a11, A12 a12, B22 b22) using(t1[n,n]) {
 MatrixAdd(t1, a11, a12);
 MatrixMultiplySqr(m5, t1, b22);
 }

 to(M6 m6) from(A21 a21, A11 a11, B11 b11, B12 b12)
using(t1[n,n], t2[n,n]) {
 MatrixSub(t1, a21, a11);
 MatrixAdd(t2, b11, b12);
 MatrixMultiplySqr(m6, t1, t2);
 }
 to(M7 m7) from(A12 a12, A22 a22, B21 b21, B22 b22)
using(t1[n,n], t2[n,n]) {
 MatrixSub(t1, a12, a22);
 MatrixAdd(t2, b21, b22);
 MatrixMultiplySqr(m7, t1, t2);
 }

 to(C11 c11) from(M1 m1, M4 m4, M5 m5, M7 m7){
 MatrixAddAddSub(c11, m1, m4, m7, m5);
 }
 to(C12 c12) from(M3 m3, M5 m5){
 MatrixAdd(c12, m3, m5);
 }
 to(C21 c21) from(M2 m2, M4 m4){
 MatrixAdd(c21, m2, m4);
 }
 to(C22 c22) from(M1 m1, M2 m2, M3 m3, M6 m6){
 MatrixAddAddSub(c22, m1, m3, m6, m2);
 }
}

35
Tuesday, October 25, 2011

Language Support for
Algorithmic Choice

• Algorithmic choice is the key aspect of PetaBricks

• Programmer can define multiple rules to compute the

same data

• Compiler re-use rules to create hybrid algorithms

• Can express choices at many different granularities

36
Tuesday, October 25, 2011

Synthesized Outer Control Flow

37
Tuesday, October 25, 2011

Synthesized Outer Control Flow

• Outer control flow synthesized by compiler

37
Tuesday, October 25, 2011

Synthesized Outer Control Flow

• Outer control flow synthesized by compiler
• Another choice that the programmer should

not make
By rows?
By columns?
Diagonal? Reverse order? Blocked?
Parallel?

37
Tuesday, October 25, 2011

Synthesized Outer Control Flow

• Outer control flow synthesized by compiler
• Another choice that the programmer should

not make
By rows?
By columns?
Diagonal? Reverse order? Blocked?
Parallel?

• Instead programmer provides explicit
producer-consumer relations

37
Tuesday, October 25, 2011

Synthesized Outer Control Flow

• Outer control flow synthesized by compiler
• Another choice that the programmer should

not make
By rows?
By columns?
Diagonal? Reverse order? Blocked?
Parallel?

• Instead programmer provides explicit
producer-consumer relations

• Allows compiler to explore choice space

37
Tuesday, October 25, 2011

Outline

• The Three Side Stories
– Performance and Parallelism with Multicores
– Future Proofing Software
– Evolution of Programming Languages

• Three Observations
• PetaBricks

– Language
– Compiler
– Results
– Variable Precision
– Sibling Rivalry

38
Tuesday, October 25, 2011

Another Example
transform RollingSum
from A[n]
to B[n]
{
 // rule 0: use the previously computed value
 B.cell(i) from (A.cell(i) a, B.cell(i-1) leftSum) {
 return a + leftSum;
 }

 // rule 1: sum all elements to the left
 B.cell(i) from (A.region(0, i) in) {
 return sum(in);
 }
}

39
Tuesday, October 25, 2011

Another Example
transform RollingSum
from A[n]
to B[n]
{
 // rule 0: use the previously computed value
 B.cell(i) from (A.cell(i) a, B.cell(i-1) leftSum) {
 return a + leftSum;
 }

 // rule 1: sum all elements to the left
 B.cell(i) from (A.region(0, i) in) {
 return sum(in);
 }
}

40

A

B

Tuesday, October 25, 2011

Another Example
transform RollingSum
from A[n]
to B[n]
{
 // rule 0: use the previously computed value
 B.cell(i) from (A.cell(i) a, B.cell(i-1) leftSum) {
 return a + leftSum;
 }

 // rule 1: sum all elements to the left
 B.cell(i) from (A.region(0, i) in) {
 return sum(in);
 }
}

40

A

B

Tuesday, October 25, 2011

Another Example
transform RollingSum
from A[n]
to B[n]
{
 // rule 0: use the previously computed value
 B.cell(i) from (A.cell(i) a, B.cell(i-1) leftSum) {
 return a + leftSum;
 }

 // rule 1: sum all elements to the left
 B.cell(i) from (A.region(0, i) in) {
 return sum(in);
 }
}

41

A

B

A

B

Tuesday, October 25, 2011

Another Example
transform RollingSum
from A[n]
to B[n]
{
 // rule 0: use the previously computed value
 B.cell(i) from (A.cell(i) a, B.cell(i-1) leftSum) {
 return a + leftSum;
 }

 // rule 1: sum all elements to the left
 B.cell(i) from (A.region(0, i) in) {
 return sum(in);
 }
}

41

A

B

A

B

Tuesday, October 25, 2011

Compilation Process

• Applicable Regions
• Choice Grids
• Choice Dependency Graphs

42

Applicable
Regions

Choice Grids

Choice
Dependency

Graphs

Tuesday, October 25, 2011

Applicable Regions

 // rule 0: use the previously computed value
 B.cell(i) from (A.cell(i) a, B.cell(i-1) leftSum) {
 return a + leftSum;
 }
Applicable Region: 1 ≤ i < n

 // rule 1: sum all elements to the left
 B.cell(i) from (A.region(0, i) in) {
 return sum(in);
 }
Applicable Region: 0 ≤ i < n

43

Applicable
Regions

Choice Grids

Choice
Dependency

Graphs

A

B

A

B
Tuesday, October 25, 2011

Choice Grids

• Divide data space into symbolic regions with
common sets of choices

• In this simple example:
– A: Input (no choices)
– B: [0; 1) = rule 1
– B: [1; n) = rule 0 or rule 1

• Applicable regions map rules à symbolic data
• Choice grids map symbolic data à rules

44

Applicable
Regions

Choice Grids

Choice
Dependency

GraphsA

B

Rule
1

Rule
0 or 1

Tuesday, October 25, 2011

Choice Dependency Graphs

• Adds dependency edges between symbolic regions
• Edges annotated with directions and rules
• Many compiler passes on this IR to:

– Simplify complex dependency patterns
– Add choices

45

Applicable
Regions

Choice Grids

Choice
Dependency

Graphs

Tuesday, October 25, 2011

PetaBricks Flow

1. PetaBricks source code is
compiled

2. An autotuning binary is
created

3. Autotuning occurs creating
a choice configuration file

4. Choices are fed back into
the compiler to create a
static binary

46
Tuesday, October 25, 2011

Autotuning

• Based on two building blocks:
– A genetic tuner
– An n-ary search algorithm

• Flat parameter space
• Compiler generates a dependency graph

describing this parameter space
• Entire program tuned from bottom up

47
Tuesday, October 25, 2011

Outline

• The Three Side Stories
– Performance and Parallelism with Multicores
– Future Proofing Software
– Evolution of Programming Languages

• Three Observations
• PetaBricks

– Language
– Compiler
– Results
– Variable Precision
– Sibling Rivalry

48
Tuesday, October 25, 2011

Sort

49

Size

Ti
m

e

Tuesday, October 25, 2011

Sort

50

Size

Ti
m

e

Tuesday, October 25, 2011

Algorithmic Choice in Sorting

51
Tuesday, October 25, 2011

Algorithmic Choice in Sorting

52
Tuesday, October 25, 2011

Algorithmic Choice in Sorting

53
Tuesday, October 25, 2011

Algorithmic Choice in Sorting

54
Tuesday, October 25, 2011

Algorithmic Choice in Sorting

55
Tuesday, October 25, 2011

Future Proofing Sort

56

SystemSystem Cores
used Scalability Algorithm Choices

(w/ switching points)

Mobile Core 2 Duo
Mobile

2 of 2 1.92 IS(150) 8MS(600) 4MS(1295) 2MS
(38400) QS(∞)

Xeon
1-way

Xeon E7340
(2 x 4 core)

1 of 8 - IS(75) 4MS(98) RS(∞)

Xeon
8-way

Xeon E7340
(2 x 4 core)

8 of 8 5.69 IS(600) QS(1420) 2MS(∞)

Niagara Sun Fire
T200

8 of 8 7.79 16MS(75) 8MS(1461) 4MS(2400)
2MS(∞)

Tuesday, October 25, 2011

Future Proofing Sort

57

SystemSystem Cores
used Scalability Algorithm Choices

(w/ switching points)

Mobile Core 2 Duo
Mobile

2 of 2 1.92 IS(150) 8MS(600) 4MS(1295) 2MS
(38400) QS(∞)

Xeon
1-way

Xeon E7340
(2 x 4 core)

1 of 8 - IS(75) 4MS(98) RS(∞)

Xeon
8-way

Xeon E7340
(2 x 4 core)

8 of 8 5.69 IS(600) QS(1420) 2MS(∞)

Niagara Sun Fire
T200

8 of 8 7.79 16MS(75) 8MS(1461) 4MS(2400)
2MS(∞)

Trained OnTrained OnTrained OnTrained On
Mobile Xeon 1-way Xeon 8-way Niagara

Run
On

Mobile - 1.09x 1.67x 1.47xRun
On Xeon 1-way 1.61x - 2.08x 2.50x
Run
On

Xeon 8-way 1.59x 2.14x - 2.35x

Run
On

Niagara 1.12x 1.51x 1.08x -

Tuesday, October 25, 2011

Matrix Multiply

58

Size

Ti
m

e

Tuesday, October 25, 2011

Matrix Multiply

59

Size

Ti
m

e

Tuesday, October 25, 2011

Eigenvector Solve

60

Size

Ti
m

e

Tuesday, October 25, 2011

Eigenvector Solve

61

Size

Ti
m

e

Tuesday, October 25, 2011

Outline

• The Three Side Stories
– Performance and Parallelism with Multicores
– Future Proofing Software
– Evolution of Programming Languages

• Three Observations
• PetaBricks

– Language
– Compiler
– Results
– Variable Precision
– Sibling Rivalry

62
Tuesday, October 25, 2011

Variable Accuracy Algorithms

63
Tuesday, October 25, 2011

Variable Accuracy Algorithms

• Lots of algorithms where the accuracy of output
can be tuned:
– Iterative algorithms (e.g. solvers, optimization)
– Signal processing (e.g. images, sound)
– Approximation algorithms

• Can trade accuracy for speed

• All user wants: Solve to a certain accuracy as
fast as possible using whatever algorithms
necessary!

63
Tuesday, October 25, 2011

A Very Brief Multigrid Intro
• Used to iteratively solve PDEs over a gridded domain

64
Tuesday, October 25, 2011

A Very Brief Multigrid Intro
• Used to iteratively solve PDEs over a gridded domain
• Relaxations update points using neighboring values

(stencil computations)

64
Tuesday, October 25, 2011

A Very Brief Multigrid Intro
• Used to iteratively solve PDEs over a gridded domain
• Relaxations update points using neighboring values

(stencil computations)
• Restrictions and Interpolations compute new grid with

coarser or finer discretization

64
Tuesday, October 25, 2011

A Very Brief Multigrid Intro
• Used to iteratively solve PDEs over a gridded domain
• Relaxations update points using neighboring values

(stencil computations)
• Restrictions and Interpolations compute new grid with

coarser or finer discretization

64

R
es

ol
ut

io
n

Compute Time

Relax on current grid

Tuesday, October 25, 2011

A Very Brief Multigrid Intro
• Used to iteratively solve PDEs over a gridded domain
• Relaxations update points using neighboring values

(stencil computations)
• Restrictions and Interpolations compute new grid with

coarser or finer discretization

64

R
es

ol
ut

io
n

Compute Time

Relax on current grid

Restrict to coarser grid

Tuesday, October 25, 2011

A Very Brief Multigrid Intro
• Used to iteratively solve PDEs over a gridded domain
• Relaxations update points using neighboring values

(stencil computations)
• Restrictions and Interpolations compute new grid with

coarser or finer discretization

64

R
es

ol
ut

io
n

Compute Time

Relax on current grid

Restrict to coarser grid

Tuesday, October 25, 2011

A Very Brief Multigrid Intro
• Used to iteratively solve PDEs over a gridded domain
• Relaxations update points using neighboring values

(stencil computations)
• Restrictions and Interpolations compute new grid with

coarser or finer discretization

64

R
es

ol
ut

io
n

Compute Time

Relax on current grid

Restrict to coarser grid

Interpolate to finer grid

Tuesday, October 25, 2011

A Very Brief Multigrid Intro
• Used to iteratively solve PDEs over a gridded domain
• Relaxations update points using neighboring values

(stencil computations)
• Restrictions and Interpolations compute new grid with

coarser or finer discretization

64

R
es

ol
ut

io
n

Compute Time

Relax on current grid

Restrict to coarser grid

Interpolate to finer grid

Tuesday, October 25, 2011

Multigrid Cycles

65

Standard Approaches

V-Cycle W-Cycle

Full MG V-Cycle

Tuesday, October 25, 2011

Multigrid Cycles

65

Standard Approaches

Relaxation operator?

V-Cycle W-Cycle

Full MG V-Cycle

Tuesday, October 25, 2011

Multigrid Cycles

65

Standard Approaches

Relaxation operator?

How many iterations?

V-Cycle W-Cycle

Full MG V-Cycle

Tuesday, October 25, 2011

Multigrid Cycles

65

Standard Approaches

Relaxation operator?

How many iterations?

How coarse do we go?

V-Cycle W-Cycle

Full MG V-Cycle

Tuesday, October 25, 2011

Multigrid Cycles

• Generalize the idea of what a multigrid cycle can
look like

• Example:

• Goal: Auto-tune cycle shape for specific usage

66

direct or iterative shortcut

relaxation
steps

Tuesday, October 25, 2011

Algorithmic Choice in Multigrid

• Need framework to make fair comparisons
• Perspective of a specific grid resolution
• How to get from A to B?

67

A B

Direct

Iterative

A B

Recursive
A B

?
Restrict Interpolate

Tuesday, October 25, 2011

Algorithmic Choice in Multigrid

• Tuning cycle shape!
– Examples of recursive options:

68

Standard V-cycle

A B

Tuesday, October 25, 2011

Algorithmic Choice in Multigrid

• Tuning cycle shape!
– Examples of recursive options:

69

Take a shortcut at a coarser resolution

A BA B

Tuesday, October 25, 2011

Algorithmic Choice in Multigrid

• Tuning cycle shape!
– Examples of recursive options:

70

Iterating with shortcuts

A B

Tuesday, October 25, 2011

Algorithmic Choice in Multigrid

• Number of iterations depends on what accuracy
we want at the current grid resolution!

71

• Tuning cycle shape!
– Once we pick a recursive option, how many times do

we iterate?

A B C D

Higher Accuracy

Tuesday, October 25, 2011

Optimal Subproblems

72
Tuesday, October 25, 2011

Optimal Subproblems

72

Better

Tuesday, October 25, 2011

• Plot all cycle shapes for a given grid resolution:

• Idea: Maintain a family of optimal algorithms for
each grid resolution

Optimal Subproblems

72

Keep only the
optimal ones!

Tuesday, October 25, 2011

The Discrete Solution

73
Tuesday, October 25, 2011

• Problem: Too many optimal cycle shapes to
remember

• Solution: Remember the fastest algorithms for a
discrete set of accuracies

The Discrete Solution

73
Tuesday, October 25, 2011

• Problem: Too many optimal cycle shapes to
remember

• Solution: Remember the fastest algorithms for a
discrete set of accuracies

The Discrete Solution

73

Remember!

Tuesday, October 25, 2011

Use Dynamic Programming

• Only search cycle shapes that utilize optimized
sub-cycles in recursive calls

• Build optimized algorithms from the bottom up

74
Tuesday, October 25, 2011

Use Dynamic Programming

• Only search cycle shapes that utilize optimized
sub-cycles in recursive calls

• Build optimized algorithms from the bottom up

• Allow shortcuts to stop recursion early

74
Tuesday, October 25, 2011

Use Dynamic Programming

• Only search cycle shapes that utilize optimized
sub-cycles in recursive calls

• Build optimized algorithms from the bottom up

• Allow shortcuts to stop recursion early
• Allow multiple iterations of sub-cycles to explore

time vs. accuracy space

74
Tuesday, October 25, 2011

transform Multigridk
from X[n,n], B[n,n]
to Y[n,n]
{
 // Base case
 // Direct solve

 OR

 // Base case
 // Iterative solve at current resolution

 OR

 // Recursive case
 // For some number of iterations
 // Relax
 // Compute residual and restrict
 // Call Multigridi for some i
 // Interpolate and correct
 // Relax
}

Auto-tuning the V-cycle

• Algorithmic choice
Shortcut base cases
Recursively call some
optimized sub-cycle

• Iterations and
recursive accuracy
let us explore
accuracy versus
performance space

• Only remember
“best” versions

75
Tuesday, October 25, 2011

transform Multigridk
from X[n,n], B[n,n]
to Y[n,n]
{
 // Base case
 // Direct solve

 OR

 // Base case
 // Iterative solve at current resolution

 OR

 // Recursive case
 // For some number of iterations
 // Relax
 // Compute residual and restrict
 // Call Multigridi for some i
 // Interpolate and correct
 // Relax
}

Auto-tuning the V-cycle

• Algorithmic choice
Shortcut base cases
Recursively call some
optimized sub-cycle

• Iterations and
recursive accuracy
let us explore
accuracy versus
performance space

• Only remember
“best” versions

75
Tuesday, October 25, 2011

transform Multigridk
from X[n,n], B[n,n]
to Y[n,n]
{
 // Base case
 // Direct solve

 OR

 // Base case
 // Iterative solve at current resolution

 OR

 // Recursive case
 // For some number of iterations
 // Relax
 // Compute residual and restrict
 // Call Multigridi for some i
 // Interpolate and correct
 // Relax
}

Auto-tuning the V-cycle

• Algorithmic choice
Shortcut base cases

75

?

Tuesday, October 25, 2011

transform Multigridk
from X[n,n], B[n,n]
to Y[n,n]
{
 // Base case
 // Direct solve

 OR

 // Base case
 // Iterative solve at current resolution

 OR

 // Recursive case
 // For some number of iterations
 // Relax
 // Compute residual and restrict
 // Call Multigridi for some i
 // Interpolate and correct
 // Relax
}

Auto-tuning the V-cycle

• Algorithmic choice
Shortcut base cases
Recursively call some
optimized sub-cycle

75

?

Tuesday, October 25, 2011

transform Multigridk
from X[n,n], B[n,n]
to Y[n,n]
{
 // Base case
 // Direct solve

 OR

 // Base case
 // Iterative solve at current resolution

 OR

 // Recursive case
 // For some number of iterations
 // Relax
 // Compute residual and restrict
 // Call Multigridi for some i
 // Interpolate and correct
 // Relax
}

Auto-tuning the V-cycle

• Algorithmic choice
Shortcut base cases
Recursively call some
optimized sub-cycle

• Iterations and
recursive accuracy
let us explore
accuracy versus
performance space

• Only remember
“best” versions

75

?

Tuesday, October 25, 2011

Variable Accuracy Keywords

76

transform Multigridk
from X[n,n], B[n,n]
to Y[n,n]

Tuesday, October 25, 2011

Variable Accuracy Keywords
• accuracy_variable – tunable variable

76

transform Multigridk
from X[n,n], B[n,n]
to Y[n,n]
accuracy_variable numIterations

Tuesday, October 25, 2011

Variable Accuracy Keywords
• accuracy_variable – tunable variable
• accuracy_metric – returns accuracy of output

76

transform Multigridk
from X[n,n], B[n,n]
to Y[n,n]
accuracy_variable numIterations
accuracy_metric Poisson2D_metric

Tuesday, October 25, 2011

Variable Accuracy Keywords
• accuracy_variable – tunable variable
• accuracy_metric – returns accuracy of output
• accuracy_bins – set of discrete accuracy bins

76

transform Multigridk
from X[n,n], B[n,n]
to Y[n,n]
accuracy_variable numIterations
accuracy_metric Poisson2D_metric
accuracy_bins 1e1 1e3 1e5 1e7

Tuesday, October 25, 2011

Variable Accuracy Keywords
• accuracy_variable – tunable variable
• accuracy_metric – returns accuracy of output
• accuracy_bins – set of discrete accuracy bins
• generator – creates random inputs for accuracy

measurement

76

transform Multigridk
from X[n,n], B[n,n]
to Y[n,n]
accuracy_variable numIterations
accuracy_metric Poisson2D_metric
accuracy_bins 1e1 1e3 1e5 1e7
generator Poisson2D_Generator

Tuesday, October 25, 2011

Training the Discrete Solution

77

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 4

Optimized

Resolution i

Resolution
i

Tuesday, October 25, 2011

Training the Discrete Solution

77

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 4

Optimized

Resolution i

Resolution
i

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Resolution
i+1 Training

Resolution i+1

Tuesday, October 25, 2011

Training the Discrete Solution

77

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 4

Optimized

Resolution i

Resolution
i

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Resolution
i+1 Training

Resolution i+1

Tuesday, October 25, 2011

Training the Discrete Solution

78

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 4

Optimized

Resolution i

Resolution
i

Resolution
i+1 Optimized

Resolution i+1

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Tuesday, October 25, 2011

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Training the Discrete Solution

79

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Finer

Coarser

Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 4

Tuning order Possible choice
(Shortcuts not shown)

Training

Optimized

Tuesday, October 25, 2011

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Training the Discrete Solution

79

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Finer

Coarser

Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 4

Tuning order Possible choice
(Shortcuts not shown)

Training

Optimized

Tuesday, October 25, 2011

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Training the Discrete Solution

79

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Finer

Coarser

Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 4

Tuning order Possible choice
(Shortcuts not shown)

2x

Training

Optimized

Tuesday, October 25, 2011

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Training the Discrete Solution

79

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Finer

Coarser

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 4

Tuning order Possible choice
(Shortcuts not shown)

2x

Optimized

Training

Optimized

Tuesday, October 25, 2011

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Training the Discrete Solution

79

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Finer

Coarser

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 4

Tuning order Possible choice
(Shortcuts not shown)

2x

Optimized

Training

Optimized

Tuesday, October 25, 2011

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Training the Discrete Solution

79

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Finer

Coarser

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 4

Tuning order Possible choice
(Shortcuts not shown)

2x

1x

Optimized

Training

Optimized

Tuesday, October 25, 2011

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Training the Discrete Solution

79

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Finer

Coarser

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Multigrid
Algorithm

Accuracy 1 Accuracy 2 Accuracy 3 Accuracy 4

Tuning order Possible choice
(Shortcuts not shown)

2x

1x

Optimized

Optimized

Optimized

Tuesday, October 25, 2011

Example: Auto-tuned 2D

80

Accy. 10 Accy. 103 Accy. 107

Finer

Coarser

Tuesday, October 25, 2011

Auto-tuned Cycles for

81

Cycle shapes for accuracy levels a) 10, b) 103, c) 105, d) 107

Tuesday, October 25, 2011

Auto-tuned Cycles for

81

Cycle shapes for accuracy levels a) 10, b) 103, c) 105, d) 107

Optimized substructures visible in cycle shapes

Tuesday, October 25, 2011

Auto-tuned Cycles for

81

Cycle shapes for accuracy levels a) 10, b) 103, c) 105, d) 107

Optimized substructures visible in cycle shapes

Tuesday, October 25, 2011

Poisson

82

Matrix Size

Ti
m

e

Tuesday, October 25, 2011

Poisson

83

Matrix Size

Ti
m

e

Tuesday, October 25, 2011

Binpacking – Algorithmic Choices

84
Accuracy

D
at

a
S

iz
e

Tuesday, October 25, 2011

Outline

• The Three Side Stories
– Performance and Parallelism with Multicores
– Future Proofing Software
– Evolution of Programming Languages

• Three Observations
• PetaBricks

– Language
– Compiler
– Results
– Variable Precision
– Sibling Rivalry

85
Tuesday, October 25, 2011

Issues with Offline Tuning

• Offline-tuning workflow burdensome
– Programs often not re-autotuned when they should be

– e.g. apt-get install fftw does not re-autotune

– Hardware upgrades / large deployments
– Transparent migration in the cloud

• Can't adapt to dynamic conditions
– System load
– Input types

86
Tuesday, October 25, 2011

SiblingRivalry: an Online Approach

• Split available resources in half
• Process identical requests on both halves
• Race two candidate configurations (safe and experimental)

and terminate slower algorithm
• Initial slowdown (from duplicating the request) can be

overcome by autotuner
• Surprisingly, reduces average power consumption per

request

87
Tuesday, October 25, 2011

Experimental Setup

88
Tuesday, October 25, 2011

SiblingRivalry: throughput

89
Tuesday, October 25, 2011

SiblingRivalry: energy usage
(on AMD48)

90
Tuesday, October 25, 2011

Conclusion

91
Tuesday, October 25, 2011

Conclusion

• Time has come for languages based on autotuning

91
Tuesday, October 25, 2011

Conclusion

• Time has come for languages based on autotuning

• Convergence of multiple forces
– The Multicore Menace
– Future proofing when machine models are changing
– Use more muscle (compute cycles) than brain (human cycles)

91
Tuesday, October 25, 2011

Conclusion

• Time has come for languages based on autotuning

• Convergence of multiple forces
– The Multicore Menace
– Future proofing when machine models are changing
– Use more muscle (compute cycles) than brain (human cycles)

• PetaBricks – We showed that it can be done!

91
Tuesday, October 25, 2011

Conclusion

• Time has come for languages based on autotuning

• Convergence of multiple forces
– The Multicore Menace
– Future proofing when machine models are changing
– Use more muscle (compute cycles) than brain (human cycles)

• PetaBricks – We showed that it can be done!

• Will programmers accept this model?
– A little more work now to save a lot later
– Complexities in testing, verification and validation

91
Tuesday, October 25, 2011

