
DEXTOR: Reduced Effort Authoring for
Template-Based Natural Language Generation

Karthik S. Narayan1, Charles L. Isbell1, David L. Roberts2
Georgia Institute of Technology1, North Carolina State University2

{karthik.narayan@, isbell@cc.}gatech.edu1, robertsd@csc.ncsu.edu2

Abstract

A growing issue in the development of realistic and entertain-
ing interactive games is the need for mechanisms that support
ongoing natural language conversation between human play-
ers and artificial non-player characters. Unfortunately, many
methods for automating and implementing natural language
generation (NLG) induce a significant burden on the author,
do not scale well, or require specialized linguistic knowledge.
We formalize the notion of typed-templates, an extension of
standard structures employed in template-based NLG. We
further provide novel algorithms that, when applied to typed-
templates, ameliorate the above issues by affording computa-
tional support for authoring and increased variation in utter-
ance and scenario generation. We demonstrate the efficacy of
typed-templates and the algorithms through a user study.

1 Introduction
As interactive entertainment and training experiences have
grown in complexity and realism, there has been a grow-
ing need for robust technologies to shape and modify those
experiences and interactions. One important kind of interac-
tion is that of natural conversations between human players
and artificial non-player characters. Natural language gener-
ation (NLG) is the field concerned with exactly this problem.
Unfortunately, many of the methods developed in the NLG
community impose a significant burden on authors to spec-
ify subject matter and, thus, do not scale well.

To address this issue, we introduce typed templates (t-
templates) that are specifications of traditional templates that
1) allow for nesting, 2) restrict the nesting of templates, and
3) allow for several utterances per template. While not a
revolutionary breakthrough in NLG template technology, t-
templates can be combined with a novel compilation al-
gorithm to enable significantly reduced authoring times for
template-based NLG systems. We demonstrate that typed
templates allow for improved authoring efficiency as well
as varied utterance generation. Our main contributions are:

1. Typed-templates, an extension of templates with recursive
substitution whose advantages include reduced effort in
language authoring and varied utterance generation.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2. An algorithm to compile t-templates that determines
which t-templates are compatible with each other and pro-
duce grammatical, and varied, utterances, and a software
implementation of that algorithm called DEXTOR.

3. Results from a user study demonstrating that t-templates
and our compilation algorithms can significantly reduce
language authoring time.

2 Other Approaches to NLG
Researchers have explored several methods of building NLG
systems; modern systems largely employ canned text (Fum
1985; Isbell et al. 2001), features (Langkilde and Knight
1998; Walker, Rambow, and Rogati 2002; Barzilay and La-
pata 2006), or templates (Becker 2002; Busemann and Ho-
racek 1998; Mcroy, Channarukul, and Ali 2003). Consist-
ing of purely hard-coded text, canned text is typically uti-
lized for simple NLG purposes; when prompted for an utter-
ance, the system returns one of the predefined statements. In
feature-based approaches of NLG, authors specify various
parts of speech and lexical items to the NLG system, which
in turn synthesizes the information into natural language. In
template-based approaches, authors use language structures
call templates that produce utterances through a fill-in-the-
blank mechanism, to realize text. For example, a template
could have the utterance “[flight] is departing from [place]
at [time].” where [flight], [place], and [time], are to be filled
in with canned text or other templates.

There is some disagreement as to which method(s) are
best. In domains where generalization is necessary (e.g.,
tutoring systems and complex role playing games), using
canned text does not scale well (Fox 1988; Theune 2003).
While feature-based NLG systems can generalize to large
domains, they are typically less efficient than other meth-
ods; further, effective usage often calls for designers to have
specialized linguistic knowledge (Theune 2003). Template-
based approaches have been adopted in many practical sys-
tems, but require authors to create template libraries, which
becomes more challenging as systems scale (Channarukul,
Mcroy, and Ali 2002; Reiter and Dale 2000).

We are primarily interested in template-based methods,
as they are well used in practice and involve a shallow
learning curve. Recently, researchers have introduced recur-
sively substituted templates (filling in a blank may yield

Glados
Glados

Chell
Chell

Tie
a tie

Store
the store

Inform
says to , “ ”

OnSale
is on sale at .

Sentence Person

Item Place

Glados says to Chell, “A tie is on sale at the store.”

Figure 1: Example t-template utterance production. Shapes
in the top-left of a box denote return types. Shapes within an
utterance denote a sample parameter configuration.

more blanks), blurring what used to be a fine line be-
tween template and feature-based approaches (Piwek 2003;
Deemter, Krahmer, and Theune 2005). This approach al-
lows templates with similar structure to be more modular
and reusable. We utilize typed templates, a derivation of re-
cursively substituted templates that allow templates to have
several utterances and restrict templates that can be substi-
tuted in blanks. We show that these additional specifications,
which can be implemented on top of existing template-based
systems, can yield significant improvements in varied natu-
ral language as well as reduced language authoring times.

3 Typed Templates
KSN - this seems really obvious from the description below.

T-templates are defined by four components: utterances,
parameters, return types, and parameter configurations.

Utterances define text generated by templates. They may
contain blanks that are in turn filled by utterances of other t-
templates. A single t-template may have several utterances,
one of which is chosen at random during generation.

Parameters are placeholders for gaps in utterances; utter-
ances of bound t-templates fill in the values of the gaps. For
clarity, we refer to bound t-templates as subtemplates.

Return types are author-defined strings that tag the se-
mantic meaning of a template. A single template must con-
tain at least one return type, but has no upper bound on
the number of return types that it can have. Sample re-
turn types could be general (e.g. NOUN) or specialized (e.g.
WEAPON); the only requirement is for all templates that
form sentences to contain the return type, SENTENCE.

A parameter configuration, or PC, is a mapping from t-
template parameters to return types. A template can bind to a
parameter only if the template contains the return type speci-
fied by the PC’s corresponding return type. An ordered set of
templates is said to be consistent with a PC if all templates
can bind to their respective parameters. For a SENTENCE
template T , a PC is considered grammatical if the utterances
that result from binding subtemplates to the parameters of T
form a grammatical sentence. Often t-templates may have
several possible grammatical PCs; in general given a set of
PCs for a t-template, when at least one of the PCs in the

set is grammatical, the PC set is said to be acceptable. If T
is a non-sentence template (i.e., a phrase), then a PC for T
is considered grammatical if T , along with it’s parameters
bound according to the PC, can be bound to a parameter of
another template as part of a grammatical PC for that tem-
plate. With this recursive definition, we state that all PCs for
parameter free t-templates are grammatical.

Ultimately, the goal is to provide an acceptable PC set per
template such that 1) the set’s size is maximized and 2) each
PC in the set is grammatical. The former allows for high
template flexibility while the latter, as we observe later in
the paper, reduces authoring time. In authoring, humans di-
rectly specify all components of a t-template excepting for
an acceptable PC set; rather, the system computes an ini-
tial acceptable PC set in a compilation process, from which
authors select appropriate grammatical PCs. The compila-
tion process is discussed in detail in Section 4, and practi-
cal effects of compilation on reduced time is discussed in
Section 7. To author a sentence, authors provide dynamic
text, or a textual representation of a t-template tree, such as
INFORM(GLADOS,CHELL,ONSALE(TIE, STORE)), to the
NLG system. We believe that authoring dynamic text will be
easier for authors because of the computational affordances
we can leverage to aid in the authoring process.

As with traditional templates, t-templates are especially
useful in cases where specialized text is necessary; t-
templates are hand-crafted, so utterances are much more
predictable than those generated by feature-based systems.
While a computer can fill template blanks in expressing sim-
ple utterances, for more complex expressions, humans often
need to recursively fill blanks while leaves could be filled
by a computer. Often, game scenarios consist of a series of
dialogue exchanges between a player and an NPC; as each
sentence varies in expression, the full scenario produces ut-
terances of significantly greater variance than what canned
text allows for. Further, t-templates are simple in that they do
not require specialized knowledge to use and have a shallow
learning curve; in a study that we describe below, all sub-
jects were able to learn and author a wide range of sentences
using dynamic text within half an hour.

A key advantage that we emphasize is a suggestion fea-
ture that NLG systems using t-templates can implement
to significantly reduce dynamic text authoring times. Once
acceptable PC sets for each t-template have been deter-
mined, as an author begins typing dynamic text such as “IN-
FORM(GLADOS,”, the system can provide real-time sugges-
tions regarding templates to fill in next. Potential subtem-
plates are suggested based on the acceptable PC set of the
root t-template, the t-template at the root of the expressed
template tree (in this case, INFORM). As the author starts
binding subtemplates, the NLG system constructs the pos-
sible grammatical PCs of the head template that the author
could possibly satisfy based on previously bound subtem-
plates (GLADOS). With this set of grammatical PCs, the sys-
tem suggests all templates having the possible return types
for the parameter that the author is trying to bind. We evalu-
ate the effectiveness of this feature later in this paper.

The chief disadvantage of using t-templates lies in creat-
ing template libraries (not dynamic text authoring); ensuring

that templates are compatible with each other can often be
time-consuming. As a result, as with templates, authoring
large-scale t-template libraries may require non-trivial plan-
ning and organization. Authors can use the compilation pro-
cess to ameliorate these problems by checking whether com-
puted acceptable PC sets match expectations. Combining
this method with existing methods to reduce authoring ef-
fort using conventional templates can significantly improve
the maintainability of template-based NLG systems (Caro-
preso et al. 2009; Dannélls 2010).

4 Template Compilation
Manually constructing a complete acceptable PC set for
each template in a large t-template library poses a large bur-
den on authors. We use an algorithm that produces an ac-
ceptable PC set of a reduced size compared to the total num-
ber of possible PCs for a template (exponential in the num-
ber of parameters). Library designers then select grammati-
cal PCs from the resulting sets. This process, referred to as
template compilation, aids authors in constructing accept-
able PC sets, as the reductions in the number of grammatical
PCs are large (see Section 5). Template compilation is bro-
ken up into determining acceptable PC sets for SENTENCE
templates and non-SENTENCE templates.

Compilation operates first on all SENTENCE t-templates
and then proceeds to non-SENTENCE t-templates. As an
initial pass, a link grammar parser (Lafferty, Sleator, and
Temperley 1992) is used to determine if a PC is grammat-
ical. After all SENTENCE t-templates are compiled using
the link grammar parser, a library designer filters the re-
sulting PCs because being grammatical is not a sufficient
condition for an utterance to make sense. Subsequently, one
by one each non-SENTENCE t-template attempts to com-
pile by backchaining templates and PCs until a complete,
grammatical, sentence is constructed. Again, a link gram-
mar is used for a first pass at determining the acceptance of
PCs, and a library designer filters the remaining. Often, a
t-template may have to be marked to be learned in the fu-
ture, particularly if no learned t-template can accept it. Once
each non-SENTENCE template has attempted to compile, an-
other sweep of non-SENTENCE compilation ensues unless:
1) all t-templates have successfully compiled or 2) no non-
SENTENCE templates successfully compile on consecutive
iterations. In the latter case, humans need to manually deter-
mine PCs for the remaining t-templates.

Advantages of compilation, reusability and reduced au-
thoring time, arise due a reduced size of the set of PCs
per template. With respect to reusability, compilation helps
make designers aware of unseen possibilities in authoring
with the constructed template library. Compilation reduces
time in both t-template and dynamic text authoring by fa-
cilitating library construction; in order to determine whether
newly constructed templates and return types integrate with
each other properly, authors can use the compiler to check
for intuitive grammatical PCs. Further, after compilation,
we can construct the template suggestion tool described to
reduce dynamic text authoring time. Intuitively, effort in
both t-template and dynamic text authoring is reduced while
reusability is boosted as the computed acceptable PC set

Table 1: Parameter configuration reductions for the sample
template library. Numbers in parentheses indicate the
percent reduction over the previous column.

Template Tot. PCs PCs - comp. PCs - filt.
SENTENCE templates

Eat(?, ?) 121 24 (80.16%) 6 (75%)
Kill(?, ?) 121 21 (82.64%) 5 (76.19%)
Visit(?, ?) 121 9 (92.56%) 5 (44.44%)
Walk(?, ?) 121 11 (90.91%) 1 (90.91%)
Inform(?, ?, ?) 1331 122 (90.83%) 3 (97.5%)
Pick(?, ?, ?) 1331 181 (86.40%) 3 (98.34%)

non-SENTENCE templates
From(?) 11 7 (36.36%) 1 (85.71%)
Scary(?) 11 2 (81.82%) 1 (50.00%)
Thick(?) 11 4 (63.64%) 4 (0.00%)
Through(?) 11 8 (27.27%) 4 (50.00%)
Large(?) 11 5 (54.55%) 2 (60.00%)
Hungry(?) 11 2 (81.82%) 1 (50.00%)
And(?, ?) 121 66 (45.45%) 13 (80.30%)

more closely represents the set of PCs that only allow for
grammatically correct utterances.

5 Template Compilation Analysis
Our results from template compilation are encouraging: we
saw an 80%-90% reduction in the number of PCs library
designers needed to consider. We ran the template compi-
lation process over a sample template library that consisted
of 28 templates (12 atomic and 16 non-atomic) with 11 re-
turn types in total. For each template, 10 sample sentences
were generated; if at least 9 of them produced acceptable
sentences according to the link grammar, the correspond-
ing PC was denoted as grammatical. We performed the final
filtering process with the generated acceptable PC set. The
results are presented in Table 1.

The goal of sentence compilation was to observe large re-
ductions in the number of parameter configurations, as well
as small reductions from manual filtering. Of the 6 SEN-
TENCE t-templates, we generally noticed around 80-90% re-
ductions in the number of PCs, leaving the rest for humans
to filter. Note that a large reduction does not necessarily im-
ply poorly constructed templates; for instance, in the VISIT
template (“x visits y”), xmust describe a person, and y must
be a place or person. This drastically reduces the number of
potential PCs, as x cannot be bound to a verb, adjective, etc.,
and y has similar restrictions. Examining human filtering on
the simplified acceptable PC set, there were still several PCs
that the link grammar incorrectly classified as semantically
correct. Since non-SENTENCE reductions depend heavily on
SENTENCE-reductions, it is important that human filtering
takes place. Our results are positive, in that compilation re-
ductions are high with low standard deviation (5.03%).

We present compilation time versus return type graphs for
t-templates with two and three parameters in Figure 2. We do
not vary the number of t-templates in the library, as compile

times per template only depend on the number of parame-
ters in a template and the number of return types in the tem-
plate library. Even with a fairly large number of return types,
our algorithm can compile 2-templates (templates with 2 pa-
rameters) in reasonable times; however, compiling templates
with more parameters takes exponentially longer. In a tem-
plate library with 15 return types, the compiler takes 6.63
seconds to compile a single 3-template. In the same template
library, the compiler takes 162.67 seconds to compile a sin-
gle 4-template. This result is expected because the number
of parameter configurations increases exponentially in the
number of parameters. As this compilation process occurs
offline and the size of domain-specific template libraries is
generally moderate, exponential growth is not a concern.

6 Study Design
To evaluate if the suggestion feature reduces dynamic text
authoring time, we implemented a “Dynamic tEXt gener-
aTOR,” called DEXTOR, that allows authors to create dy-
namic text using t-templates. In the following user study, as
the system presents a series of statements, subjects author
dynamic text that generates each statement. We hypothesize
that DEXTOR’s compilation will reduce the time spent con-
structing correct template bindings for dynamic text.

The study proceeded as follows:

• Consent Form. Subjects were presented with the consent
form and were required to sign before continuing.

• Familiarization. We familiarize subjects with DEXTOR
by having them author two sets of six statements using the
client. Statements are simple sentences such as: Glados
says to Chell, “There is a sale on ties.”, and responses
form dynamic text, such as: INFORM(GLADOS, CHELL,
ONSALE(TIES)). In both the familiarization and testing
question sets, we provide subjects with the root template.

• Testing. Subjects author another two sets of statements,
which are timed. One set allows use of the suggestion fea-
ture while the other does not.

• Exit survey. Finally, subjects are presented with two ques-
tions to answer regarding the user study.

0

20

40

60

80

100

120

140

160

180

10 15 20 25 30

Ti
m

e
(s

)

Number of Return Types

Compile Time vs. Number of Return Types

2-template

3-template

4-template

Figure 2: Compile times for t-templates with various param-
eter sizes in the LITTLEREDRIDINGHOOD template library.

All materials, including t-template libraries and state-
ments to author were hand-crafted before the study. Human
effort in determining PCs was primarily devoted towards fil-
tering in compilation. We recruited 45 participants for the
study from an introductory machine learning course taught
at a local university. The students were either pursuing an
undergraduate or graduate degree, and had at least three
years of computer experience. Participation in the study was
optional and no compensation was provided.

6.1 Familiarization, Testing, and Exit Survey
Familiarization is important in reducing learning curve ef-
fects that may impact authoring times in testing. Subjects
encounter two sets of statements to author for practice be-
fore entering the testing stage. Both sets of questions that
subjects author use a t-template library called GOLDILOCKS
focusing on the children’s story, “Goldilocks and the Three
Bears.” The first set of questions does not allow use of the
suggestion feature, while the second set does.1 Subjects are
allowed to ask questions regarding the interface, as the fa-
miliarization portion of the study is not timed. Once subjects
author the two sets of practice statements, they proceed to
the timed statements. Again, each subject is given two sets
of statements to author. Treatments for this study are varied
by changing the template library behind the questions and
whether suggestions are present. During the timed session,
we leave the subject alone with the system to try to avoid
observer-expectancy effects.

After authoring the timed statements, subjects are re-
quested to participate in a brief two question exit survey.
Participation is not obligatory. Responses are linked with
testing question times, but are otherwise anonymous. The
questions presented to the subjects are:

• The suggestion feature that was provided made statements
easier to author. (Likert scale 1-5)

• Which of the following methods would you rather use
in authoring sentences: templates (e.g. Inform(John, Bill,
HelloWorld)) or just sentences (e.g. John says to Bill,
“Hello world!”)?

At the end of the two questions, there is a comment box
for subjects to provide feedback. Once the subject clicks a
submit button, all responses are stored, and an alert indicates
the subject that he has completed the study.

6.2 Treatments
Treatments are applied during the testing component. Sub-
jects experience two sets of statements to author, both of
which draw from different t-template libraries, named HAR-
RYPOTTER and LITTLEREDRIDINGHOOD. We constructed
the libraries such that responses would have similar template
tree structures, allowing for similar difficulties. We hypothe-
sized their might be, but using a 3-way factorial ANOVA test
failed to find any significant difference in question response
times based on the story used (p = 0.2092). This was as we
had hoped.

1By not presenting the suggestion feature, users effectively
work with regular templates, and not t-templates.

Figure 3: The user interface used for testing the suggestion
feature (the large box in the middle). The same interface
without the large box in the middle was used to test author-
ing without the suggestion feature.

Subjects are guaranteed to have one set of test state-
ments with the suggestion feature and one without, enabling
a longitudinal comparison. Varying the story and presence
of suggestion feature aspects produce a total of four sub-
ject groups. Subjects were partitioned into these groups ran-
domly. While we vary two factors in the study, we need to
account for experience gained by subjects between the first
and second set of questions. As such, we also include order
as a factor to consider in the results. Of the 45 test subjects
who participated in the study, 11 subjects were considered in
each of the four groups; data for one subject was eliminated
at random from the group with 12 subjects.

6.3 User Interface
In both practice and test sessions, users are initially greeted
with a begin screen that indicates the name of the underlying
template library, whether the suggestion tool is present, and
the number of questions in the section. This begin screen
also appears as subjects begin new question sets.

Subjects provided responses to questions using the inter-
face in Figure 3. A target sentence is displayed, and subjects
provide dynamic text to realize the target. All available tem-
plates are presented in a list, which we call the template box,
towards the bottom of the screen. The template box is inten-

Table 2: A 3-way Factorial ANOVA test indicating effects
of suggestions, the story, and order of appearance on cumu-
lative times. Each row corresponds to a factor (e.g. “order”)
or to an interaction among factors (e.g. “order:story”).

Variable F-value p-value
suggestion 82.5526 4.007 · 10−13

order 0.2244 0.6373
story 1.6090 0.2092
suggestion:order 0.1509 0.6990
suggestion:story 0.6863 0.4105
order:story 0.0240 0.8774
suggestion:order:story 0.1800 0.6728

0

5

10

15

20

25

30

sd d no a sa

C
o

u
n

t

Response

Felt that Suggestions Helped?

Figure 4: Distribution of responses corresponding to sub-
jects’ opinions on the usefulness of the suggestion feature.

tionally made where subjects have to scroll to find required
templates, as language authors using large template libraries
most likely need to do the same. Templates pertaining to the
suggestion feature, if present, are in another list, the sug-
gestion box, directly above the template box. Note that the
template box is smaller than the suggestion box; we do this
to encourage subjects to use the suggestion feature. The size
difference does not affect the results, since at most five tem-
plates, the height of the template box, were ever listed at
once in the suggestion box. Box sizes were identical across
treatment groups, controlling for any interaction effects as-
sociated with the user interface and experiment group.

As seen in Figure 3, the initial answer box contains the
root template, where each ? denotes a parameter. To produce
dynamic text, subjects may either replace the question marks
with template names using standard keyboard input, or dou-
ble click the appropriate template in the template or sugges-
tion boxes. Subjects proceed to the next statement once they
provide valid dynamic text that generates the objective.

7 Study Results
Our results fit our hypotheses with strong statistical signifi-
cance; we can claim with confidence that the suggestion fea-
ture greatly reduces the burden on authoring. Table 2 sum-
marizes results obtained from a three way factorial ANOVA

test. The factors considered were: 1) whether the suggestion
tool was present, 2) the story presented, and 3) whether the
question set was the first or second run for a subject. The
suggestion feature accounts for a significant portion of the
observed variance in time while the order and story do not
appear to account for any of the observed variance.

7.1 Suggestion Feature Evaluation

The primary result of this study is that the suggestion feature
reduces dynamic text authoring time. On average, subjects
took around 2.1 times more time without the suggestion fea-
ture than with the suggestion feature: subjects took around
98.91 seconds (σ = 35.44 seconds) with suggestions and
207.42 seconds (σ = 59.37 seconds) without suggestions.
This difference is highly significant with p = 4.007 · 10−13

(see “suggestion” variable in Table 1).
It is possible that the story or the order in which sub-

jects received the suggestion feature could have influenced
the times; however, the ANOVA tests do not indicate sig-
nificant attributions to timing differences due to the story
(p = .2092) nor ordering (p = 0.6373). Further, the results
suggest that interactions between factors were low; from
these observations, we believe that the suggestion feature
was the primary contribution to reducing authoring time.

7.2 Exit Survey Results

Participants in each of the four categories seemed to rate the
usefulness of the suggestion tool highly—of the 45 subjects
tested, 38 (84%) either agreed or strongly agreed that the
suggestion tool reduced efforts. Surprisingly, subjects were
evenly matched between deciding whether language author-
ing was easier done with templates or sentences; 23 (51%)
of the 45 subjects stated that they would rather use templates
to author sentences while the remaining 22 stated that they
would rather use sentence-based approaches.

8 Conclusion
T-templates offer several advantages over canned text and
feature-based methods; as subjects in our user study demon-
strated, authoring t-template libraries and dynamic text re-
quires little to no prior linguistic or specialized knowledge.
The shallow learning curve allows game designers to incor-
porate NLG components more easily, and with reduced au-
thoring costs; our user study results indicate that exploiting
t-template compatibilities, which requires a small cost due to
compilation, results in less time required to author dynamic
text with t-templates than with standard recursive templates.
Two diverse lines of research that could improve the qual-
ity of DEXTOR as a whole include automated template gen-
eration and finer sentence discernability. Machine learning
techniques could yield an algorithm that takes in a sentence
and generates more varied sentences through template ex-
traction. Through language smoothing techniques, one could
potentially construct a better sentence classifier. Combining
these methods, with compiled t-templates, natural language
generation for games becomes more simple, and faster.

Acknowledgements
We would like to thank Aurel Lazar and William van
Wagstaff for their useful insights. We would also like to
thank the reviewers for their time in reviewing this paper.

References
Barzilay, R., and Lapata, M. 2006. Aggregation via set partition-
ing for natural language generation. HLT-NAACL ’06, 359–366.
Stroudsburg, PA, USA: Association for Computational Linguistics.
Becker, T. 2002. Practical, templatebased natural language gener-
ation with tag. In Proceedings of TAG+6.
Busemann, S., and Horacek, H. 1998. A flexible shallow approach
to text generation. In Proceedings of the Ninth International Work-
shop on Natural Language Generation, 238–247.
Caropreso, M. F.; Inkpen, D.; Khan, S.; and Keshtkar, F. 2009.
Novice-friendly natural language generation template authoring
environment. In Proceedings of the 22nd Canadian Conference
on Artificial Intelligence: Advances in Artificial Intelligence, Cana-
dian AI ’09, 195–198. Berlin, Heidelberg: Springer-Verlag.
Channarukul, S.; Mcroy, S. W.; and Ali, S. S. 2002. Jyag & idey: A
template-based generator and its authoring tool. In Proceedings of
the 40th Meeting of the Association for Computational Linguistics.
Dannélls, D. 2010. Applying semantic frame theory to automate
natural language template generation from ontology statements.
INLG ’10, 179–183. Stroudsburg, PA, USA: Association for Com-
putational Linguistics.
Deemter, K. V.; Krahmer, E.; and Theune, M. 2005. Real versus
template-based natural language generation: A false opposition?
Computational Linguistics 31.
Fox, B. 1988. Robust learning environments: The issue of canned
text. Technical report.
Fum, D. 1985. Natural language processing and the automatic ac-
quisition of knowledge: a simulative approach. EACL ’85, 79–88.
Stroudsburg, PA, USA: Association for Computational Linguistics.
Isbell, C.; Shelton, C. R.; Kearns, M.; Singh, S.; and Stone, P. 2001.
A social reinforcement learning agent. AGENTS ’01, 377–384.
New York, NY, USA: ACM.
Lafferty, J.; Sleator, D.; and Temperley, D. 1992. Grammatical
trigrams: A probabilistic model of link grammar. Technical report,
Pittsburgh, PA, USA.
Langkilde, I., and Knight, K. 1998. Generation that exploits
corpus-based statistical knowledge. ACL ’98, 704–710. Strouds-
burg, PA, USA: Association for Computational Linguistics.
Mcroy, S. W.; Channarukul, S.; and Ali, S. S. 2003. An aug-
mented template-based approach to text realization. Nat. Lang.
Eng. 9:381–420.
Piwek, P. 2003. A flexible pragmatics-driven language generator
for animated agents. EACL ’03, 151–154. Stroudsburg, PA, USA:
Association for Computational Linguistics.
Reiter, E., and Dale, R. 2000. Building Natural Language Gener-
ation Systems. Cambridge University Press.
Theune, M. A. 2003. Natural language generation for dialogue:
system survey. Technical Report 2003-22.
Walker, M. A.; Rambow, O. C.; and Rogati, M. 2002. Training
a sentence planner for spoken dialogue using boosting. Computer
Speech and Language.

