
Scheduling Cloud Capacity for Time- Varying 
Customer Demand 

Brian Bouterse 
Department of Computer Science 
North Carolina State University 

Raleigh, NC, USA 
bmbouter@gmail.com 

Harry Perros 
Department of Computer Science 
North Carolina State University 

Raleigh, NC, USA 
hp@ncsu.edu

 
 

Abstract—As utility computing resources become more 
ubiquitous, service providers increasingly look to the cloud for an 
in-full or in-part infrastructure to serve utility computing 
customers on demand. Given the costs associated with cloud 
infrastructure, dynamic scheduling of cloud resources can 
significantly lower costs while providing an acceptable service 
level. We investigated several methods for predicting the 
required cloud capacity in the presence of time-varying customer 
demand of application environments. We evaluated and 
compared their performance, using historical data of the Virtual 
Computing Laboratory (VCL) at North Carolina State 
University. We show that a simple heuristic, whereby we 
continuously maintain a fixed reserve capacity, performs better 
than the other methods. 

Index Terms— capacity planning, auto scaling, application 
delivery, VCL, virtualization, non-stationary traffic, 
non-homogeneous traffic, traffic characterization, traffic 
prediction 

I. INTRODUCTION 
Service providers have the challenging problem of 

satisfying customer demand while minimizing their expenses 
on infrastructure. Historically, a service provider owns the 
entire infrastructure, which is typically dimensioned for peak 
demand. Cloud computing provides an alternative way to use 
an infrastructure without owning it, which is to rent computing 
resources by the hour. The cloud infrastructure is provided by 
the cloud provider. This frees a service provider from the 
financial burden of owning equipment, but requires scheduling 
of resources in order to satisfy dynamically varying customer 
demand. Users rely on the service provider to get access to 
applications hosted in cloud environments. Service providers 
try to minimize the cost of virtual machines. In this paper, we 
consider the problem of capacity planning of cloud resources 
for a service provider delivering compute-intensive desktop 
applications based on customer demand that varies as a 
function of time. We define capacity as the number of 
application users a cloud is capable of servicing concurrently. 
We assume that the service provider has unlimited access to 
virtual machines in a cloud environment. We propose and 
compare several models for managing the required number of 
virtual machines, so that the demand is satisfied within a given 
blocking probability while the total number of unused 
resources is kept as low as possible. For this, we use historical 
data from the Virtual Computing Laboratory (VCL) at North 

Carolina State University [9]. The VCL offers computing 
services to 42,000 students and faculty who use it to run 
applications for teaching and research. The VCL as a service 
provider contains the right challenges to practically benefit 
from a schedule of bringing online and offline cloud computing 
resources. 

 
Existing cloud computing provisioning models explore the 

capacity-planning problem from the service provider 
perspective [4], [5], [14]. The focus of this paper is client-
orchestrated provisioning of cloud computing infrastructure, 
which is a separate concern from the cloud optimization by the 
service provider [6]. In Roy et al. [8] the authors explore client-
orchestrated cloud provisioning models that rely on predictive 
techniques using a single statistical model to predict near-term 
workload demand [13]. Urgaonkar [13] uses a hybrid model 
of predictive and reactive decision-making, and use a workload 
predictor proposed by Rolia et al. [7]. Our research compares 
several statistical workload prediction techniques, one of which 
is the model proposed by Roy et al. [8]. Specifically, we 
analyze and compare the provisioning effectiveness of several 
statistical traffic prediction techniques, and a heuristic-based 
technique. We explore both reactive and predictive 
provisioning techniques. Client-orchestrated cloud provisioning 
policies with real-time demand needs are also explored [2] and 
[11], assuming advanced resource reservation by users. This 
paper assumes that application reservations are not known in 
advance. Cloud infrastructure boot times make this problem 
non-trivial. 
 

This paper is organized as follows. Section 2 presents the 
system under study. In section 3, we assume that we have a 
very reliable forecast of the number of requests per five-minute 
intervals for a given period of time. Using this forecast, we 
determine the necessary capacity for all five-minute interval for 
the same period of time using the Erlang loss model so that the 
blocking probability is less or equal to 0.01. In section 4, we 
present four forecasting models for predicting the demand for 
every five-minute interval. Based, on the predicted demand for 
the next five-minute interval, we determine the necessary 
capacity using the Erlang loss model so that the blocking 
probability is less or equal to 0.01. In section 5, we present a 
simple heuristic model where a fixed reserve capacity is 
maintained. The performance of each model, expressed in 
terms of the blocking probability and the total unused seat 



 

Fig. 1.  Year 1 number of requests per 5 minute interval 

 

 

Fig. 2.  The service time distribution of year 1 data 

capacity, is evaluated for different traffic conditions. In 
addition, in section 6, we compare these five models using a 
composite metric that combines both the blocking probability 
and the total unused capacity. We show that the reserve 
capacity model performs the best among the models studied. 
Finally, the conclusions are given in section 7.  

II. THE SYSTEM UNDER STUDY 
We assume that a service provider rents virtual machines 

from a cloud dynamically in order to match the anticipated 
customer demand, which varies over time. Each virtual 
machine is a part of the cluster, and we assume an unlimited 
supply of virtual machines. Each virtual machine has N 
application seats for concurrent independent users to use. In 
practice, VCL uses virtual machines that have two user 
application seats, but experimenting with a range of virtual 
machine user seat capacities per virtual machine only 
marginally changed blocking probability. In this paper, we 
assume that N=2, unless otherwise noted. Servers are requested 
dynamically as customer demand increases, and they are also 
released dynamically as demand decreases. The increases and 
decreases are an integer number of servers. We assume an 
infinite population of users. If a user arrives at a time when 
there are no seats available, the user is blocked and leaves the 
system without returning. 

 
The proposed models are tested using historical data from 

the VCL collected for two years. Year 1 began on July 1 2008, 
and year 2 on July 1 2009. Users that took longer than 8 hours 
were removed from the data set. This is because the maximum 
on-demand reservation in VCL is 8 hours. Longer reservations 
are also accepted but they are provisioned in a dedicated way, 
which is not within the scope of this study. The resultant data 
set consists of a total of 175,554 requests in the first year and 
232,626 in the second year. Each request is associated with the 
time at which it was issued and the total service time used, i.e., 
the total time the user holds a seat. The number of requests 
computed over 5 minute intervals for year 1 is shown in figure 
1, and the histogram of the service times for the same year is 
shown in figure 2. 

As can be seen in figure 1, the arrival rate varies in time, 
daily and weekly. The arrival traffic also varies seasonally with 
traffic characteristics as the school calendar transitions through 
the fall and spring semesters, summer sessions, and dead 
periods. For instance, the midpoint in figure 1 has very low 

arrival traffic, which corresponds with the academic December 
holiday. 

We assume a delay between the time that a number of 
virtual machines are requested to the time they become 
available. This reflects the boot time to bring up a new virtual 
machine and we assume that it is independent of the requested 
number of virtual machines. Based on empirical observation of 
current cloud infrastructures by the authors, the boot time is set 
to five minutes. A shut down delay is also introduced in order 
to avoid “thrashing”, see Groskinsky [3], whereby a virtual 
machine is released and immediately after a new virtual 
machine is requested. Such an oscillation can cause an 
unnecessary boot time. The shut down time is set to five 
minutes. After five minutes, the released virtual machines are 
returned to the service provider’s pool of free virtual machines 
in the cloud infrastructure. When a new virtual machine is 
requested, we first examine whether there are any released 
virtual machines that have not been returned to the service 
provider’s pool yet. If there is one, then it is put into service 
without incurring a boot time. In addition, a released virtual 
machine is removed from active service only if all seats of the 
virtual machine are empty. Finally, we note that virtual 
machines are assigned priorities, and a user is always assigned 
to the highest priority available virtual machine. The user 
assignment policy groups users densly onto VMs in the cluster. 

 
We now proceed to describe the five models for predicting 

the capacity of the system under study. The performance of 
each model is expressed in terms of blocking probability and 
total unused seat-hours. The blocking probability is defined as 
the probability that a request will be denied because there are 
no seats available. To calculate the blocking probability and the 
total number of unused seat-hours of each model, we 
developed a simulation, implemented in SimPy [10], which 
models the system described above, with the provisioning of 
the capacity obtained by the model under test. 

III. POISSON CAPACITY PLANNING USING A FORECASTING 
PERIOD WITH PRE-KNOWN DEMAND 

In this section, we assume that we have a very reliable 
forecast of the number of requests per five-minute interval for 
an entire period of time. For each five-minute interval, we 
calculate the required capacity so that the blocking probability 
is 1%. We do this using the Erlang-loss queueing model. That 



is, the system under study is modeled as an Erlang-loss 
queueing model where each server in the queueing model 
represents an application seat. (A server in the queueing model 
should not be confused with a virtual machine in the physical 
system under study.) The arrival process is assumed to be 
Poisson distributed with a time-dependent arrival rate, equal to 
the number of requests forecasted to occur during each five-
minute interval over the entire period of the forecast. The mean 
service time in the Erlang-loss is equal to 1.377 hours, which is 
calculated from the year 1 data of the VCL. For a given 
capacity, arrival and service rates, the blocking probability can 
be obtained using the well-known Erlang B loss equation, 
which is not dependent on the distribution of the service time. 
This expression is obtained under the assumption that the 
arrival rate is stationary. However, in this case the arrival rate is 
non-stationary since it varies for each five-minute interval. In 
Alnowibet and Perros [1], it was observed that the time-
dependent blocking probability BP(t) can be obtained 
approximately using the Erlang B formula. That is, 

 

(1) 

where ρ(t)=λ(t)/µ is the traffic intensity, with µ equal to the 
service rate, λ(t) the time-dependent arrival rate, and s be the 
number of application seats. The authors Alnowibet and Perros 
observe that the approximation has an extremely low relative 
error. Consequently, for each five-minute interval we calculate 
the blocking probability using the forecasted number of 
requests for the same interval. 
 

Using a simple search algorithm we can find the value of s, 
the total number of seats required so that the blocking 
probability is less than or equal to 1%. Repeating this for all 
successive five-minute intervals, yields a curve of the required 
seat capacity so that the blocking probability of 0.01 is 
satisfied. In figure 3, we show this curve for year 1, consisting 
of 105,120 five-minute observations. The number of virtual 
machines is obtained by dividing the seat capacity by the 
number of application seats per virtual machine and rounding 
up. Given that we know the required virtual machine 
application seat capacity, we can construct an optimum 
schedule to provision and de-provision virtual machines, taking 
into account the boot time and shut down times. 

 

Running the simulation on the year 1 VCL data, we obtain 
a blocking probability of 0.00899 and total unused seat-hours 
of 167,476. The forecast used as input to this scheme is the 
actual historical data, and consequently there are no forecasting 
errors. The unused seat-hours are due to the calculation of the 
capacity at each five-minute interval using the Erlang B 
formula which assumes that the arrival process is Poisson 
distributed, and also due to over-dimensioning that arises from 
the fact that there are N seats per virtual machine. The error of 
using the Erlang B formula for approximating non-stationary 
arrivals is negligible as reported by Alnowibet and Perros [1]. 
When tested with different N values of seats per virtual 
machine, the error only changed marginally.  In view of this, 
the main source of error in these results is due to the Poisson 
assumption. However, in practice, this source of error is less 
than the error due to forecasting demand. 

IV. MODELS FOR FORECASTING CUSTOMER 
DEMAND 

In this section, we present four different forecasting models 
that are used to predict the number of requests in the next five-
minute interval. Based on the predicted customer demand, the 
Erlang B formula is used as in section III to determine the 
capacity of the system so that the blocking probability is less or 
equal to 0.1. Accordingly, a provisioning or a deprovisioning 
action may be initiated. 

A. Moving Average Model 
The moving average model with parameter k determines the 

customer demand for the next five-minute interval st+1 based on 
the previous k five-minute interval actual observations xt, xt-1, ... 
, xt-k+1, as follows: 

€ 

s(k) =
xt + xt−1 + ...+ xt−k+1

k
 (2) 

Using this model in our simulation we obtained the 
blocking probability, seat utilization, and total unused seat-
hours for year 1, for various values of k. The results are 
summarized in table 1. As before, we assumed N=2 application 
seats per virtual machine, and boot time and shut down times 
equal to five minutes. We observe that the moving average 
model meets the requirement of the blocking probability and 
with k=30 it achieves the unused seat hours of 265,110. 

TABLE 1.  THE MOVING AVERAGE MODEL FOR DIFFERENT VALUES OF K FOR 
YEAR 1 

k Blocking Probability Seat Utilization Unused  Seat-Hours 
1 0.0002   0.36485 420758.3 
3 0.00088  0.43478 313958.4 

10 0.00031  0.46837 274287.7 
30 0.00085  0.47673 265110.1 

100 0.0305  0.46494 269908.8 
 

Once optimized on the VCL year 1 data, we want to 
evaluate how well the optimized model generalized to traffic 
environments with different arrival and service time behaviors. 
Using k=30, we run the simulation using the moving average 
model against artificial traffic scenarios obtained by scaling the 
number of requests per five-minute intervals and the service 
times from year 1 by an offered traffic scaling factor and by a 

 
Fig. 3.  The required number of seats for each five-minute interval for year 1 

such that the blocking probability is less or equal to 0.01. 



service time scaling factor respectively. Both scaling factors 
were varied from 0.5 to 1.5. The case where they are both equal 
to 1 corresponds to the year 1 data. We note that the scaling 
causes peaks and valleys in the offered traffic to become 
steeper. The results are presented in figure 4.  

 
Figure 4 shows that this model successfully manages 

blocking probability to below 0.01 for increases of up to 20% 
in the service time, or increases in the number of requests per 
five-minute interval of up to 50%. We note that year 2 
represents an increase in traffic volume of 32%, and an 
increase in service time of 5%. Using the actual year 2 data, we 
obtained a blocking probability of 0.00412 and total unused 
seat-hours of 257,177 hours. These year 2 results are similar to 
the equivalent artificially scaled year 1 traffic scenario. 

With 265,110 and 257,177 unused seat-hours in year 1 and 
year 2 respectively, the model is over-allocating capacity, 
which explains why the blocking probability is so low, and the 
unused hours high. The previous model described in section III, 
gave rise to 167,476 unused seat-hours for year 1 where we 
assumed perfect knowledge of demand. The moving average 
model performs approximately 100,000 hours worse, but it 
does not require perfect knowledge of the demand over a 
period of time. 

B. Exponential Moving Average Model 
An exponential moving average model is also used in the 

simulation to determine its feasibility. The model is as follows: 
 

€ 

s1 = x0

st = αxt−1 + (1−α)st−1 = st−1 +α(xt−1 − st−1),   t >1
 (3) 

 
where st and xt are the estimated and observed values for the tth 
five-minute interval, and α, 0 ≤ α ≤1. This model was used in 
the simulation for various values of α for year 1 and the results 
are shown in table 2. 
 

Almost all values of α satisfy the blocking probability 
requirement and for α=0.05 we obtain a blocking probability of 
0.00099 and 265,484 unused seat-hours. Using α=0.05, we run 
the exponential moving average model against the same scaled 

artificial traffic scenarios as in section 4a. The results are 
presented in figure 5. 

TABLE 2.  EXPONENTIAL MOVING AVERAGE MODEL FOR VARIOUS VALUES OF 
Α FOR YEAR 1. 

α Blocking Probability Seat Utilization Unused Seat-Hours 
0.01 0.02898  0.46442 270415.2 
0.05 0.00099  0.47633 265483.9 
0.1 0.00021  0.47215 270191.1 
0.3 0.00042  0.4495 295902.1 
0.7 0.00034  0.40191 359612.8 
0.9 0.00025  0.3771 399222.0 
1.0 0.0002  0.36485 420758.3 

 
Figure 5 shows that this model successfully manages 

blocking probability to below 0.01 for increases of up to 10% 
in the service time, or increases in the number of requests per 
five-minute interval of up to 40%. For year 2 data, we obtained 
a blocking probability of 0.00473 and total unused seat-hours 
of 257,697 hours, which are similar to the equivalent  
artificially scaled year 1 traffic scenario. 

 

C. An Autoregressive Model 
A second order autoregressive model with parameters c, 

{φ1,φ2,…,φn}, and εt is defined as follows: 

 (4) 

where st is the estimated value for the tth five-minute interval, 
and εt is normally distributed with mean 0 and variance σ2. This 
model was also proposed by Schaffer [9] to predict virtual 
machine workload. Using the year 1 data set, the parameters of 
this model are optimized assuming an order of two and c=0. 
Using the Yule-Walker method [12], we obtain φ1=0.4108, 
φ2=0.3368, and σ2=2.98. Based on experimentation, increasing 
the modeling order beyond 2 yields only marginal 
improvements, and using c values other than 0 introduce long-
term bias in prediction error. We use this model in our 
simulation for year 1, and we obtained a blocking probability 
of 0.00475 and unused seat-hours of 497,610. We run this 
autoregressive model against the same artificial traffic 
scenarios as in section 4a and the results are presented in figure 

 
Fig. 4.  The blocking probability of the moving average model with k = 30 

versus the scaling factor for the number of requests and the service time. 

 
Fig. 5.  The exponential moving average blocking probability model with 
α=0.05 versus the scaling factor for the traffic intensity and service time. 



6. We note that this model successfully manages blocking 
probability to below 0.01 for increases of up to 10% in the 
service time, or increases in the number of requests per five-
minute interval of up to 40%. Using the actual year 2 data in 
the simulation, we obtained a blocking probability of 0.01031 
and 471,683 unused seat-hours, which are similar to the results 
of the equivalent artificially scaled year 1 traffic scenario. 

D. A Mixed Autoregressive Model 
The calendar year in an academic environment can be 

broken down, from the point of view of customer demand for 
VCL, to the following three periods: a) Fall and Spring 
semesters, b) Summer sessions 1 and 2, and c) exam periods. 

An autoregressive model was obtained using the Yule-Walker 
method [12] for each of these three periods using the year 1 
data set. The model parameters are given in table 3. 

TABLE 3.  C, Φ1, Φ2, AND Σ2 FOR THE EACH TIME PERIOD FOR YEAR 1. 

Time Period c φ1 φ2 σ2 
Fall/Spring Classes 0 0.3993 0.3226 4.197 
Summer Sessions 0 0.2604 0.1966 0.9281 

Exams 0 0.2530 0.2044 1.638 
 

We refer to these three models as the mixed autoregressive 
model. Using the mixed autoregressive model in the simulation 
with the demand from year 1, we obtained a blocking 
probability of 0.00636 and 443,440 unused seat-hours. As in 
the previous models, the mixed autoregressive model was run 
against the artificial traffic scenarios from section 4a and the 
results are presented in figure 7. 

 
Figure 7 shows that this model successfully manages 

blocking probability to below 0.01 for increases of up to 10% 
in the service time, or increases in the number of requests per 
five-minute interval of up to 20%. For  year 2, we obtain a 
blocking probability of 0.01494 (which does not meet the 
required level of 0.01) and total unused seat-hours of 415,460. 

V. THE RESERVE CAPACITY MODEL 
In this section we present a simple heuristic for determining 

the capacity of the VCL, whereby we continuously maintain R 
available seats. Specifically, every 300 seconds, the current 
level of usage is observed and according to the number of 
available seats it maybe adjusted up or down so that the 
number of available seats is at least R. We refer to this model 
as the reserve capacity model. Using the year 1 data, we 
experiment with different values of R. The results are 
summarized in table 4. We observe that for R=12, the blocking 
probability is 0.00895 and the total unused seat-hours is 
118,028. Using R=12, we run the reserve capacity model 
against the artificial traffic from section 4a, and the results are 
shown in figure 8. 

TABLE 4.  RESULTS FOR DIFFERENT R VALUES FOR YEAR 1 

Reserved 
Capacity (R) 

Blocking  
Probability 

Seat  
Utilization 

Unused 
Seat-Hours 

5 0.05519 0.79352 59645.7 
10 0.01336  0.70308 100932.1 
12 0.00895 0.6703 118027.7 
15 0.00558  0.62563 144049.9 
20 0.00275  0.56286 187384.7 

 
Figure 8 shows that this model yields a blocking probability 

to below 0.01 for increases of up to 20% in the service time, 

 
Fig. 7.  The blocking probability of the mixed autoregressive model with 
parameters from table 3 versus the scaling factor for the number of requests 

and the service time. 

 
Fig. 6.  The blocking probability of the autoregressive model with 

φ1=0.4108, φ2=0.3368, and σ2 of 2.98 versus the scaling factor for the number 
of requests and the service time. 

 
Fig. 8.  The blocking probability of the reserve capacity model with 

R=12 versus the scaling factor for the number of requests and the service 
time. 



but it cannot tolerate any increase in the offered traffic load. 
Simulation from actual year 2 data yields a blocking 
probability of 0.01036 and unused seat-hours of 120,922, 
similar to the equivalent artificially scaled year 1 traffic 
scenario. 

VI. COMPOSITE METRIC 
In this section, we compare the performance of the four 

forecasting models presented in section IV and the reserve 
capacity model presented above. We did not include the first 
model presented in section III, since it is deemed unrealistic. 
For this comparison, we combined the two performance 
metrics, i.e., the blocking probability and the unused hours, into 
a single composite metric, following the method proposed by 
Yiltas and Perros [15]. This composite metric is calculated for 
all the methods in order to compare their performance. For 
each metric, all the observed values for all the models and for 
all the traffic scenarios investigated (a total of 121) are sorted 
in an ascending order, and assigned an integer equal to their 
position in the list. Metric values that tie are assigned the same 
position integer. The integer values are then normalized by the 
sum (U(U – U)/2), where U is the total number of observations, 
that is, U=5x121=605. The composite metric of a model is the 
sum of the two normalized integers, one for the blocking 
probability and one for the total unused hours. In figure 9, we 
give a plot of the composite metric for each model and for each 
traffic case.  

The x-axis lists the traffic cases as follows. The scaling 
factor for the arrival rate increasing from 0.5 to 1.5 from left to 
right, and for each arrival rate value the service time scaling 
increases from 0.5 to 1.5 for left to right. All the composite 
metrics show a periodic trend as the service time scaling is 
increased when the arrival scaling is already above 1.0. The 
smaller the composite metric, the better the performance of the 
model. We note that the reserve capacity model (thick line) 
outperforms all the other models. 

VII. CONCLUSIONS 
In this paper, we examine several different models for 

dimensioning the capacity of cloud-based system in the 
presence of time-varying customer demand. It appears that the 
reserve capacity model significantly outperforms all models as 

is shown clearly by the composite metric graph of Figure 9. For 
better performance year-after-year, R should be recalibrated 
every year. 

 
The reserve capacity model outperforms all Poisson-based 

traffic capacity planning models because the total error of an 
optimized reserve capacity strategy has 118,028 unused seat-
hours while a Poisson approximated provisioning schedule that 
assumes pre-known demand has 167,476.  This may suggest 
that the Poisson treatment of the VCL arrival process is not a 
good assumption. However, this needs to be further 
investigated. 

 
Among the traffic prediction methods that use the Erlang 

loss model to calculate the required capacity, it seems that the 
mixed autoregressive model outperforms the autoregressive 
model by an average of 11.4%. 
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Fig. 9.  Composite metrics of the five policy models versus traffic scenarios.  


