
Scheduling Cloud Capacity for Time- Varying
Customer Demand

Brian Bouterse
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
bmbouter@gmail.com

Harry Perros
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
hp@ncsu.edu

Abstract—As utility computing resources become more
ubiquitous, service providers increasingly look to the cloud for an
in-full or in-part infrastructure to serve utility computing
customers on demand. Given the costs associated with cloud
infrastructure, dynamic scheduling of cloud resources can
significantly lower costs while providing an acceptable service
level. We investigated several methods for predicting the
required cloud capacity in the presence of time-varying customer
demand of application environments. We evaluated and
compared their performance, using historical data of the Virtual
Computing Laboratory (VCL) at North Carolina State
University. We show that a simple heuristic, whereby we
continuously maintain a fixed reserve capacity, performs better
than the other methods.

Index Terms— capacity planning, auto scaling, application
delivery, VCL, virtualization, non-stationary traffic,
non-homogeneous traffic, traffic characterization, traffic
prediction

I. INTRODUCTION
Service providers have the challenging problem of

satisfying customer demand while minimizing their expenses
on infrastructure. Historically, a service provider owns the
entire infrastructure, which is typically dimensioned for peak
demand. Cloud computing provides an alternative way to use
an infrastructure without owning it, which is to rent computing
resources by the hour. The cloud infrastructure is provided by
the cloud provider. This frees a service provider from the
financial burden of owning equipment, but requires scheduling
of resources in order to satisfy dynamically varying customer
demand. Users rely on the service provider to get access to
applications hosted in cloud environments. Service providers
try to minimize the cost of virtual machines. In this paper, we
consider the problem of capacity planning of cloud resources
for a service provider delivering compute-intensive desktop
applications based on customer demand that varies as a
function of time. We define capacity as the number of
application users a cloud is capable of servicing concurrently.
We assume that the service provider has unlimited access to
virtual machines in a cloud environment. We propose and
compare several models for managing the required number of
virtual machines, so that the demand is satisfied within a given
blocking probability while the total number of unused
resources is kept as low as possible. For this, we use historical
data from the Virtual Computing Laboratory (VCL) at North

Carolina State University [9]. The VCL offers computing
services to 42,000 students and faculty who use it to run
applications for teaching and research. The VCL as a service
provider contains the right challenges to practically benefit
from a schedule of bringing online and offline cloud computing
resources.

Existing cloud computing provisioning models explore the

capacity-planning problem from the service provider
perspective [4], [5], [14]. The focus of this paper is client-
orchestrated provisioning of cloud computing infrastructure,
which is a separate concern from the cloud optimization by the
service provider [6]. In Roy et al. [8] the authors explore client-
orchestrated cloud provisioning models that rely on predictive
techniques using a single statistical model to predict near-term
workload demand [13]. Urgaonkar [13] uses a hybrid model
of predictive and reactive decision-making, and use a workload
predictor proposed by Rolia et al. [7]. Our research compares
several statistical workload prediction techniques, one of which
is the model proposed by Roy et al. [8]. Specifically, we
analyze and compare the provisioning effectiveness of several
statistical traffic prediction techniques, and a heuristic-based
technique. We explore both reactive and predictive
provisioning techniques. Client-orchestrated cloud provisioning
policies with real-time demand needs are also explored [2] and
[11], assuming advanced resource reservation by users. This
paper assumes that application reservations are not known in
advance. Cloud infrastructure boot times make this problem
non-trivial.

This paper is organized as follows. Section 2 presents the
system under study. In section 3, we assume that we have a
very reliable forecast of the number of requests per five-minute
intervals for a given period of time. Using this forecast, we
determine the necessary capacity for all five-minute interval for
the same period of time using the Erlang loss model so that the
blocking probability is less or equal to 0.01. In section 4, we
present four forecasting models for predicting the demand for
every five-minute interval. Based, on the predicted demand for
the next five-minute interval, we determine the necessary
capacity using the Erlang loss model so that the blocking
probability is less or equal to 0.01. In section 5, we present a
simple heuristic model where a fixed reserve capacity is
maintained. The performance of each model, expressed in
terms of the blocking probability and the total unused seat

Fig. 1. Year 1 number of requests per 5 minute interval

Fig. 2. The service time distribution of year 1 data

capacity, is evaluated for different traffic conditions. In
addition, in section 6, we compare these five models using a
composite metric that combines both the blocking probability
and the total unused capacity. We show that the reserve
capacity model performs the best among the models studied.
Finally, the conclusions are given in section 7.

II. THE SYSTEM UNDER STUDY
We assume that a service provider rents virtual machines

from a cloud dynamically in order to match the anticipated
customer demand, which varies over time. Each virtual
machine is a part of the cluster, and we assume an unlimited
supply of virtual machines. Each virtual machine has N
application seats for concurrent independent users to use. In
practice, VCL uses virtual machines that have two user
application seats, but experimenting with a range of virtual
machine user seat capacities per virtual machine only
marginally changed blocking probability. In this paper, we
assume that N=2, unless otherwise noted. Servers are requested
dynamically as customer demand increases, and they are also
released dynamically as demand decreases. The increases and
decreases are an integer number of servers. We assume an
infinite population of users. If a user arrives at a time when
there are no seats available, the user is blocked and leaves the
system without returning.

The proposed models are tested using historical data from

the VCL collected for two years. Year 1 began on July 1 2008,
and year 2 on July 1 2009. Users that took longer than 8 hours
were removed from the data set. This is because the maximum
on-demand reservation in VCL is 8 hours. Longer reservations
are also accepted but they are provisioned in a dedicated way,
which is not within the scope of this study. The resultant data
set consists of a total of 175,554 requests in the first year and
232,626 in the second year. Each request is associated with the
time at which it was issued and the total service time used, i.e.,
the total time the user holds a seat. The number of requests
computed over 5 minute intervals for year 1 is shown in figure
1, and the histogram of the service times for the same year is
shown in figure 2.

As can be seen in figure 1, the arrival rate varies in time,
daily and weekly. The arrival traffic also varies seasonally with
traffic characteristics as the school calendar transitions through
the fall and spring semesters, summer sessions, and dead
periods. For instance, the midpoint in figure 1 has very low

arrival traffic, which corresponds with the academic December
holiday.

We assume a delay between the time that a number of
virtual machines are requested to the time they become
available. This reflects the boot time to bring up a new virtual
machine and we assume that it is independent of the requested
number of virtual machines. Based on empirical observation of
current cloud infrastructures by the authors, the boot time is set
to five minutes. A shut down delay is also introduced in order
to avoid “thrashing”, see Groskinsky [3], whereby a virtual
machine is released and immediately after a new virtual
machine is requested. Such an oscillation can cause an
unnecessary boot time. The shut down time is set to five
minutes. After five minutes, the released virtual machines are
returned to the service provider’s pool of free virtual machines
in the cloud infrastructure. When a new virtual machine is
requested, we first examine whether there are any released
virtual machines that have not been returned to the service
provider’s pool yet. If there is one, then it is put into service
without incurring a boot time. In addition, a released virtual
machine is removed from active service only if all seats of the
virtual machine are empty. Finally, we note that virtual
machines are assigned priorities, and a user is always assigned
to the highest priority available virtual machine. The user
assignment policy groups users densly onto VMs in the cluster.

We now proceed to describe the five models for predicting

the capacity of the system under study. The performance of
each model is expressed in terms of blocking probability and
total unused seat-hours. The blocking probability is defined as
the probability that a request will be denied because there are
no seats available. To calculate the blocking probability and the
total number of unused seat-hours of each model, we
developed a simulation, implemented in SimPy [10], which
models the system described above, with the provisioning of
the capacity obtained by the model under test.

III. POISSON CAPACITY PLANNING USING A FORECASTING
PERIOD WITH PRE-KNOWN DEMAND

In this section, we assume that we have a very reliable
forecast of the number of requests per five-minute interval for
an entire period of time. For each five-minute interval, we
calculate the required capacity so that the blocking probability
is 1%. We do this using the Erlang-loss queueing model. That

is, the system under study is modeled as an Erlang-loss
queueing model where each server in the queueing model
represents an application seat. (A server in the queueing model
should not be confused with a virtual machine in the physical
system under study.) The arrival process is assumed to be
Poisson distributed with a time-dependent arrival rate, equal to
the number of requests forecasted to occur during each five-
minute interval over the entire period of the forecast. The mean
service time in the Erlang-loss is equal to 1.377 hours, which is
calculated from the year 1 data of the VCL. For a given
capacity, arrival and service rates, the blocking probability can
be obtained using the well-known Erlang B loss equation,
which is not dependent on the distribution of the service time.
This expression is obtained under the assumption that the
arrival rate is stationary. However, in this case the arrival rate is
non-stationary since it varies for each five-minute interval. In
Alnowibet and Perros [1], it was observed that the time-
dependent blocking probability BP(t) can be obtained
approximately using the Erlang B formula. That is,

(1)

where ρ(t)=λ(t)/µ is the traffic intensity, with µ equal to the
service rate, λ(t) the time-dependent arrival rate, and s be the
number of application seats. The authors Alnowibet and Perros
observe that the approximation has an extremely low relative
error. Consequently, for each five-minute interval we calculate
the blocking probability using the forecasted number of
requests for the same interval.

Using a simple search algorithm we can find the value of s,
the total number of seats required so that the blocking
probability is less than or equal to 1%. Repeating this for all
successive five-minute intervals, yields a curve of the required
seat capacity so that the blocking probability of 0.01 is
satisfied. In figure 3, we show this curve for year 1, consisting
of 105,120 five-minute observations. The number of virtual
machines is obtained by dividing the seat capacity by the
number of application seats per virtual machine and rounding
up. Given that we know the required virtual machine
application seat capacity, we can construct an optimum
schedule to provision and de-provision virtual machines, taking
into account the boot time and shut down times.

Running the simulation on the year 1 VCL data, we obtain
a blocking probability of 0.00899 and total unused seat-hours
of 167,476. The forecast used as input to this scheme is the
actual historical data, and consequently there are no forecasting
errors. The unused seat-hours are due to the calculation of the
capacity at each five-minute interval using the Erlang B
formula which assumes that the arrival process is Poisson
distributed, and also due to over-dimensioning that arises from
the fact that there are N seats per virtual machine. The error of
using the Erlang B formula for approximating non-stationary
arrivals is negligible as reported by Alnowibet and Perros [1].
When tested with different N values of seats per virtual
machine, the error only changed marginally. In view of this,
the main source of error in these results is due to the Poisson
assumption. However, in practice, this source of error is less
than the error due to forecasting demand.

IV. MODELS FOR FORECASTING CUSTOMER
DEMAND

In this section, we present four different forecasting models
that are used to predict the number of requests in the next five-
minute interval. Based on the predicted customer demand, the
Erlang B formula is used as in section III to determine the
capacity of the system so that the blocking probability is less or
equal to 0.1. Accordingly, a provisioning or a deprovisioning
action may be initiated.

A. Moving Average Model
The moving average model with parameter k determines the

customer demand for the next five-minute interval st+1 based on
the previous k five-minute interval actual observations xt, xt-1, ...
, xt-k+1, as follows:

€

s(k) =
xt + xt−1 + ...+ xt−k+1

k
 (2)

Using this model in our simulation we obtained the
blocking probability, seat utilization, and total unused seat-
hours for year 1, for various values of k. The results are
summarized in table 1. As before, we assumed N=2 application
seats per virtual machine, and boot time and shut down times
equal to five minutes. We observe that the moving average
model meets the requirement of the blocking probability and
with k=30 it achieves the unused seat hours of 265,110.

TABLE 1. THE MOVING AVERAGE MODEL FOR DIFFERENT VALUES OF K FOR
YEAR 1

k Blocking Probability Seat Utilization Unused Seat-Hours
1 0.0002 0.36485 420758.3
3 0.00088 0.43478 313958.4

10 0.00031 0.46837 274287.7
30 0.00085 0.47673 265110.1

100 0.0305 0.46494 269908.8

Once optimized on the VCL year 1 data, we want to
evaluate how well the optimized model generalized to traffic
environments with different arrival and service time behaviors.
Using k=30, we run the simulation using the moving average
model against artificial traffic scenarios obtained by scaling the
number of requests per five-minute intervals and the service
times from year 1 by an offered traffic scaling factor and by a

Fig. 3. The required number of seats for each five-minute interval for year 1

such that the blocking probability is less or equal to 0.01.

service time scaling factor respectively. Both scaling factors
were varied from 0.5 to 1.5. The case where they are both equal
to 1 corresponds to the year 1 data. We note that the scaling
causes peaks and valleys in the offered traffic to become
steeper. The results are presented in figure 4.

Figure 4 shows that this model successfully manages

blocking probability to below 0.01 for increases of up to 20%
in the service time, or increases in the number of requests per
five-minute interval of up to 50%. We note that year 2
represents an increase in traffic volume of 32%, and an
increase in service time of 5%. Using the actual year 2 data, we
obtained a blocking probability of 0.00412 and total unused
seat-hours of 257,177 hours. These year 2 results are similar to
the equivalent artificially scaled year 1 traffic scenario.

With 265,110 and 257,177 unused seat-hours in year 1 and
year 2 respectively, the model is over-allocating capacity,
which explains why the blocking probability is so low, and the
unused hours high. The previous model described in section III,
gave rise to 167,476 unused seat-hours for year 1 where we
assumed perfect knowledge of demand. The moving average
model performs approximately 100,000 hours worse, but it
does not require perfect knowledge of the demand over a
period of time.

B. Exponential Moving Average Model
An exponential moving average model is also used in the

simulation to determine its feasibility. The model is as follows:

€

s1 = x0

st = αxt−1 + (1−α)st−1 = st−1 +α(xt−1 − st−1), t >1
 (3)

where st and xt are the estimated and observed values for the tth
five-minute interval, and α, 0 ≤ α ≤1. This model was used in
the simulation for various values of α for year 1 and the results
are shown in table 2.

Almost all values of α satisfy the blocking probability
requirement and for α=0.05 we obtain a blocking probability of
0.00099 and 265,484 unused seat-hours. Using α=0.05, we run
the exponential moving average model against the same scaled

artificial traffic scenarios as in section 4a. The results are
presented in figure 5.

TABLE 2. EXPONENTIAL MOVING AVERAGE MODEL FOR VARIOUS VALUES OF
Α FOR YEAR 1.

α Blocking Probability Seat Utilization Unused Seat-Hours
0.01 0.02898 0.46442 270415.2
0.05 0.00099 0.47633 265483.9
0.1 0.00021 0.47215 270191.1
0.3 0.00042 0.4495 295902.1
0.7 0.00034 0.40191 359612.8
0.9 0.00025 0.3771 399222.0
1.0 0.0002 0.36485 420758.3

Figure 5 shows that this model successfully manages

blocking probability to below 0.01 for increases of up to 10%
in the service time, or increases in the number of requests per
five-minute interval of up to 40%. For year 2 data, we obtained
a blocking probability of 0.00473 and total unused seat-hours
of 257,697 hours, which are similar to the equivalent
artificially scaled year 1 traffic scenario.

C. An Autoregressive Model
A second order autoregressive model with parameters c,

{φ1,φ2,…,φn}, and εt is defined as follows:

 (4)

where st is the estimated value for the tth five-minute interval,
and εt is normally distributed with mean 0 and variance σ2. This
model was also proposed by Schaffer [9] to predict virtual
machine workload. Using the year 1 data set, the parameters of
this model are optimized assuming an order of two and c=0.
Using the Yule-Walker method [12], we obtain φ1=0.4108,
φ2=0.3368, and σ2=2.98. Based on experimentation, increasing
the modeling order beyond 2 yields only marginal
improvements, and using c values other than 0 introduce long-
term bias in prediction error. We use this model in our
simulation for year 1, and we obtained a blocking probability
of 0.00475 and unused seat-hours of 497,610. We run this
autoregressive model against the same artificial traffic
scenarios as in section 4a and the results are presented in figure

Fig. 4. The blocking probability of the moving average model with k = 30

versus the scaling factor for the number of requests and the service time.

Fig. 5. The exponential moving average blocking probability model with
α=0.05 versus the scaling factor for the traffic intensity and service time.

6. We note that this model successfully manages blocking
probability to below 0.01 for increases of up to 10% in the
service time, or increases in the number of requests per five-
minute interval of up to 40%. Using the actual year 2 data in
the simulation, we obtained a blocking probability of 0.01031
and 471,683 unused seat-hours, which are similar to the results
of the equivalent artificially scaled year 1 traffic scenario.

D. A Mixed Autoregressive Model
The calendar year in an academic environment can be

broken down, from the point of view of customer demand for
VCL, to the following three periods: a) Fall and Spring
semesters, b) Summer sessions 1 and 2, and c) exam periods.

An autoregressive model was obtained using the Yule-Walker
method [12] for each of these three periods using the year 1
data set. The model parameters are given in table 3.

TABLE 3. C, Φ1, Φ2, AND Σ2 FOR THE EACH TIME PERIOD FOR YEAR 1.

Time Period c φ1 φ2 σ2
Fall/Spring Classes 0 0.3993 0.3226 4.197
Summer Sessions 0 0.2604 0.1966 0.9281

Exams 0 0.2530 0.2044 1.638

We refer to these three models as the mixed autoregressive
model. Using the mixed autoregressive model in the simulation
with the demand from year 1, we obtained a blocking
probability of 0.00636 and 443,440 unused seat-hours. As in
the previous models, the mixed autoregressive model was run
against the artificial traffic scenarios from section 4a and the
results are presented in figure 7.

Figure 7 shows that this model successfully manages

blocking probability to below 0.01 for increases of up to 10%
in the service time, or increases in the number of requests per
five-minute interval of up to 20%. For year 2, we obtain a
blocking probability of 0.01494 (which does not meet the
required level of 0.01) and total unused seat-hours of 415,460.

V. THE RESERVE CAPACITY MODEL
In this section we present a simple heuristic for determining

the capacity of the VCL, whereby we continuously maintain R
available seats. Specifically, every 300 seconds, the current
level of usage is observed and according to the number of
available seats it maybe adjusted up or down so that the
number of available seats is at least R. We refer to this model
as the reserve capacity model. Using the year 1 data, we
experiment with different values of R. The results are
summarized in table 4. We observe that for R=12, the blocking
probability is 0.00895 and the total unused seat-hours is
118,028. Using R=12, we run the reserve capacity model
against the artificial traffic from section 4a, and the results are
shown in figure 8.

TABLE 4. RESULTS FOR DIFFERENT R VALUES FOR YEAR 1

Reserved
Capacity (R)

Blocking
Probability

Seat
Utilization

Unused
Seat-Hours

5 0.05519 0.79352 59645.7
10 0.01336 0.70308 100932.1
12 0.00895 0.6703 118027.7
15 0.00558 0.62563 144049.9
20 0.00275 0.56286 187384.7

Figure 8 shows that this model yields a blocking probability

to below 0.01 for increases of up to 20% in the service time,

Fig. 7. The blocking probability of the mixed autoregressive model with
parameters from table 3 versus the scaling factor for the number of requests

and the service time.

Fig. 6. The blocking probability of the autoregressive model with

φ1=0.4108, φ2=0.3368, and σ2 of 2.98 versus the scaling factor for the number
of requests and the service time.

Fig. 8. The blocking probability of the reserve capacity model with

R=12 versus the scaling factor for the number of requests and the service
time.

but it cannot tolerate any increase in the offered traffic load.
Simulation from actual year 2 data yields a blocking
probability of 0.01036 and unused seat-hours of 120,922,
similar to the equivalent artificially scaled year 1 traffic
scenario.

VI. COMPOSITE METRIC
In this section, we compare the performance of the four

forecasting models presented in section IV and the reserve
capacity model presented above. We did not include the first
model presented in section III, since it is deemed unrealistic.
For this comparison, we combined the two performance
metrics, i.e., the blocking probability and the unused hours, into
a single composite metric, following the method proposed by
Yiltas and Perros [15]. This composite metric is calculated for
all the methods in order to compare their performance. For
each metric, all the observed values for all the models and for
all the traffic scenarios investigated (a total of 121) are sorted
in an ascending order, and assigned an integer equal to their
position in the list. Metric values that tie are assigned the same
position integer. The integer values are then normalized by the
sum (U(U – U)/2), where U is the total number of observations,
that is, U=5x121=605. The composite metric of a model is the
sum of the two normalized integers, one for the blocking
probability and one for the total unused hours. In figure 9, we
give a plot of the composite metric for each model and for each
traffic case.

The x-axis lists the traffic cases as follows. The scaling
factor for the arrival rate increasing from 0.5 to 1.5 from left to
right, and for each arrival rate value the service time scaling
increases from 0.5 to 1.5 for left to right. All the composite
metrics show a periodic trend as the service time scaling is
increased when the arrival scaling is already above 1.0. The
smaller the composite metric, the better the performance of the
model. We note that the reserve capacity model (thick line)
outperforms all the other models.

VII. CONCLUSIONS
In this paper, we examine several different models for

dimensioning the capacity of cloud-based system in the
presence of time-varying customer demand. It appears that the
reserve capacity model significantly outperforms all models as

is shown clearly by the composite metric graph of Figure 9. For
better performance year-after-year, R should be recalibrated
every year.

The reserve capacity model outperforms all Poisson-based

traffic capacity planning models because the total error of an
optimized reserve capacity strategy has 118,028 unused seat-
hours while a Poisson approximated provisioning schedule that
assumes pre-known demand has 167,476. This may suggest
that the Poisson treatment of the VCL arrival process is not a
good assumption. However, this needs to be further
investigated.

Among the traffic prediction methods that use the Erlang

loss model to calculate the required capacity, it seems that the
mixed autoregressive model outperforms the autoregressive
model by an average of 11.4%.

REFERENCES
[1] Alnowibet, K.A. and Perros, H., “Nonstationary analysis of the loss

queue and of queueing networks of loss queue,” European J. of
Operational Research, vol. 196, pp. 1015-1030, 2009.

[2] Beckman, P. et al., “SPRUCE: A system for supporting urgent high-
performance computing,” Grid-Based Problem Solving Environments,
pp. 295-311, 2007.

[3] Groskinsky, B. et al., “An investigation of adaptive capacity control
schemes in a dynamic traffic environment,” IEICE Trans. on Commun.
E Series B, vol. 84, pp. 263-274, 2001.

[4] Jiang, J et al., “An Innovative Self-Adaptive Configuration Optimization
System in Cloud Computing,” IEEE Ninth Int. Conf. on Dependable,
Autonomic and Secure Computing, pp. 621-627, 2011.

[5] Li, B. et al., “Enacloud: An energy-saving application live placement
approach for cloud computing environments,” IEEE Int. Conf. on Cloud
Computing, pp. 17-24, 2009.

[6] Lim, H.C., et al. “Automated control in cloud computing: challenges and
opportunities,” Proc. of the 1st workshop on Automated control for
datacenters and clouds, pp. 13-18, 2009.

[7] Rolia, J. et al., “Statistical service assurances for applications in utility
grid environments,” J. of Perf. Evaluation, vol. 58, pp. 319-339, 2004.

[8] Roy, N. et al., “Efficient Autoscaling in the Cloud Using Predictive
Models for Workload Forecasting,” Proc. of the IEEE 4th Int. Conf. on
Cloud Comp., pp. 500-507, 2011.

[9] Schaffer, H.E., “NCSU's virtual computing lab: a cloud computing
solution,” J. or Comp., vol. 42, pp. 94-97, 2009.

[10] SimPy Developer Team (2012, 6, 13). SimPy Simulation Package
[Online]. Available http://simpy.sourceforge.net/

[11] Sotomayor, B. et al., “Capacity leasing in cloud systems using the
opennebula engine,” Workshop on Cloud Comp. and its Applicat., vol 3,
2008.

[12] Stoica, P. and Moses, R.L., “AR Signals” in Introduction to spectral
analysis, Prentice Hall Upper Saddle River, NJ, 1997, ch. 3 sec. 3.4.1,
pp. 89.

[13] Urgaonkar, B., “Agile dynamic provisioning of multi-tier internet
applications,” ACM Trans. on Autonomous and Adaptive Syst., vol. 3,
2008.

[14] Van, H.N. et al., “SLA-aware virtual resource management for cloud
infrastructures,” Ninth IEEE Int. Conf. on Comp. and Inform.
Technology, pp. 357-362, 2009.

[15] Yiltas, D. and Perros, H. “A composite QoS metric for multi-attribute
QoS-based multi-domain routing,” IET Comm., vol. 5, pp. 327-336,
2011.

Fig. 9. Composite metrics of the five policy models versus traffic scenarios.

