Space 2.0
Mark Adams, Vice President
Technology & Engineering
Modern Day Education and Technology allows you to:
“Design Your Own Future”
COMMUNICATING WITH THE COSMOS: THE DEEP SPACE NETWORK AND THE JAMES WEBB SPACE TELESCOPE

PERATON COMPLETES SUCCESSFUL SATELLITE GROUND TERMINAL PROTOTYPE TEST

“What can you do in preparation for something that’s never been attempted? Well, you do the can’t be done,” said Program Manager Jason M.

PROVIDING THE LINK BETWEEN MANKIND AND THE MOON

With the successful launch of the uncrewed Artemis I spacecraft November 16, NASA teams realized the first step in a series of missions setting the stage for humanity’s return to the Moon and beyond.
Survey Question: “How Important are Space Investments to the future of Mankind”

A. Not very important
B. Somewhat important
C. Very important
Smaller – Faster – Cheaper Space System

1994 Clementine Program

Key Technologies:
- Advanced Risk Processors
- Solar Panel Technologies
- High Resolution Multispectral Sensors
- Forward Chaining Inference Engine (Autonomy)

Critical Discoveries
- Advancements in Miniaturized Sensors
- Star Tracking Technologies for Celestial Positioning
- IP-Networking in Space
- Advanced Power Systems
- Full Mapping of the Moon Surface
- Evidence of Ice on Moon in Polar Region
Key Technologies:
Material Sciences
Life Sciences
Advanced Processors
Power Systems
Integrated Sensors Systems
Artificial Intelligence
Machine Learning
Autonomous Systems
Advanced Communications
Data Processing

Critical Accomplishments:
Dress Rehearsal for Future Manned Missions
Successful Validation of Technology
Critical Information on Performance
Technology Maturation
Operational Training
Space 2.0
“Design Your Own Future”

- Climate Science
- Cosmology
- Space Exploration
- Space Protection