
Competition and Sustainability:
Two Sides of the Same Coin

Michael Tiemann
Vice President, Open Source Affairs



Origin of Innovation in America

 “When a private individual mediates an undertaking, however directly connected it 
may be with the welfare of society, he never thinks of soliciting the cooperation 
of the Government, but he publishes his plan, offers to execute it himself, courts 
the assistance of other individuals, and struggles manfully against all obstacles.  
Undoubtedly he is often less successful that the State might have been in his 
position; but in the end the sum of these private undertakings far exceeds all 
that the Government could have done.”

-- Alexis de Tocqueville, Democracy in America

n.b. It is not the choice between private monopoly-like approaches that is better 
than a government-originated monopoly, but the competition, choice, and most 
importantly the sum total of multiple, interoperable, and cumulative results.



In 1987...

 Compiler ports cost $1.5M-$5M and took 2-3 years to deliver

 The National 32032 chip was marketed as a Motorola 68K-killer
● 32-bit vs. 16-bit architecture
● “orthogonal” (VAX-like) instruction set
● True 1 MIPS performance (1 full VAX Unit of Performance)

 When delivered, 32032 was only 0.75 MIPS/VUPS

 The day that GCC was released as free software (supporting VAX 
and m68k), I decided to attempt a port to the 32032
● New port + 20% better performance after two weeks
● 40% better performance after four weeks
● GCC delivered 1.4*.75 = 1.05 MIPS for free, but National would not 

abandon their multi-million dollar investment in failed technology

 The National 32032 died; National exited microprocessors



In 1987...

 Los Alamos invested $100M in Sun Microsystems workstations to 
create a “virtual” atomic bomb

 Visiting our lab, I issued them a challenge: tell me their #1 most 
important computing routine, then before they left that afternoon, I'd 
deliver better performance with a free compiler than Sun ever did

 In four hours, with no documentation, I delivered 10% better 
performance on their most critical routine (and many others, too)

 10% of $100M is $10M of excess value created in four hours

 I was invited to the lab to meet the Director, who, after avoiding me 
all day, told me “we have a way of doing things around here, and 
we're not going to change that just because of what you have done. 
 How does that make you feel?”



In 1987...

 A month after the Los Alamos visit, I received a mysterious 
package by Federal Express – the architecture reference manual 
for the SPARC microprocessor

 Three days later, I finished the port, generating competitive 
performance to the Sun compiler, but I didn't know whom to tell

 It took me one more day to tune the compiler to better 
performance than Sun's own compiler, and to deduce the identity 
of the mysterious correspondent

 When I called to tell him of my exploits, he offered me a job at Sun

 I told him I'd come in a year, after delivering on my promises to 
DARPA (which I did)



In 1987...

 The C++ programming language was rising rapidly (and paving 
the way for Java).  It's creator, Bjarne Stroustrup, would later be 
recognized:
● 1990: Top 12 young scientists, Fortune Magazine
● 1993: ACM Fellow, and Admiral Grace Hopper Award winner
● 1995: 20 Most Influential people [computer industry in] past 20 years
● 1996: AT&T Fellow
● 2004: Member, National Academy of Engineering
● 2005: IEEE Fellow
● Did not write a native code C++ compiler because that was “too hard”

 I released the first native code C++ compiler December, 1987

 5 years later, 30+ people at Bell Labs abandoned their effort

 Today, even Apple uses GNU C++



Was this about me, or about free software?



I believed it was about freedom...

...and that the success 
of a company based on 
free software could 
fundamentally transform 
the industry.



Along the way, we invented:

 One of the first commercial uses of the Internet (cygnus.com)

 The ISP (the little garden)

 The software subscription model
● Leveraged, Progressive, and Vintage Support

 The first Free Software magazine (the Free Software Report)

 The first working POSIX environment for Windows (cygwin)

 A dual-licensing model for free and proprietary software (cygwin)

 A fully generic software build system (autoconf, automake)

 Free software tools for: regression testing, bug tracking, library 
management

 Public-facing, internet-enabled Christmas Tree

 And of course...the first Open Source company



Standards and Control

“The decision to make the Web an open system

  was necessary for it to be universal.  You can't propose 
that something be a universal space and at the same 
time keep control of it.”

-- Tim Berners-Lee, Creator of the World Wide Web

See http://www.w3.org/People/Berners-Lee/FAQ.html#What2

http://www.w3.org/People/Berners-Lee/FAQ.html#What2


Vital Statistics

 Headquarters in Raleigh, NC

 Founded in 1993

 IPO, 1999

 Acquired Cygnus 2000

 S&P 500 (NYSE: RHT)

 FY10 revenues: $748 million

 3,200+ employees in 28+ countries

 Cash and investments: $761 million (virtually debt-free)



Red Hat Revenues (1999-2010)

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
0

100

200

300

400

500

600

700

800

Revenues $M



Making a Project Into a Supported Product

 Collaboration with partners and open 
source contributors to develop technology

 Deliver complete distributions in two 
stages for two audiences
● First stage

● Fedora and JBoss.org–
development vehicles

● Approximately twice/year
● Unsupported
● Fast moving, latest technology

● Second stage
● Red Hat Enterprise Linux/JBoss 

Suite
● Approximately every 18 months
● Supported and certified
● Stable, mature, commercially 

focused technologies



Major Contributors to Linux

None
Red Hat
Novell
IBM
Unknown
Intel
consultants
Oracle
Renesas
Linux Found.
academics
SGI
Fujitsu
Parallels
Analog Devices
Nokia
HP
MontaVista
Google
AMD
Freescale

Source: Linux Foundation 2010



Was this about Red Hat, or about Community?



I began to think it was about Community...
and liberal distribution



From #1 in industry to a whole new industry

advanced
development

design

build
(prototypes)

test
(feedback)

Supplier

Interface

Customer

advanced
development

design

build
(prototypes)

test
(feedback)

Supplier

Interface

Customer

Thomke, Stefan and Eric von Hippel (2002) “Customers as Innovators:
 A New Way to Create Value“ Harvard Business Review, Vol 80 No. 4 April 

pp 74-81. 



Necessity is the mother of invention...



"The conventional notion of 
property is the right to 
exclude. Property in open 
source is configured 
fundamentally around the 
right to distribute, not the 
right to exclude."

Prof. Steven Weber
Director of the Institute of 
International Studies
UC Berkeley



Moore's Cannibal Principle

    “The whole point of integrated circuits is to absorb the functions
      of what previously were discrete electronic components,
      to incorporate them in a single new chip, and then to
                                  give them back for free,
      or at least for a lot less money than what they cost as individual parts.
      Thus, semiconductor technology eats everything,
      and people who oppose it get trampled.”

      Source: Gordon Moore (Intel Chairman) quoted in Brent Schlender,
                     Why Andy Grove Can't Stop Fortune, July 10, 1995, p. 91



But what about Sustainability?



Designing for Difficulty: A Long Way To Go

“Even in 1909, the fundamental limitations of [the Wright Brothers'] design are 
evident.  Much the way a bicycle cannot maintain its balance unless it is moving, 
the Wrights have purposefully designed their planes to be inherently unstable, 
believing, mistakenly, that this is an essential factor to control in the air.”  From 
Unlocking the Sky by Seth Shulman

“Bad Software” is software that was intentionally designed to hamper or completely 
thwart rivals, even when such manoeuvres hurt not only the software itself, but 
the customers of that software; See Breaking Windows by David Bank

 2001: The Standish Group Estimated $78B/year wasted on “Bad Software”
 2002: NIST Estimated $60B/year lost in US alone due to “software bugs”
 2002: Net profits of Fortune 500 is approximately $68B
 2003: US Federal IT budget set at $59B

● History suggests 80% will be wasted, not deployed
 2003: Cost of Worms and Viruses alone range $17B­$55B



The True Cost of “Bad Software”

[However], there [has been] no Moore's law for software.
While computing power falls rapidly in price, software that can make use of that
computing power becomes more complicated, sometimes more expensive
and less reliable, and almost always more difficult to configure and maintain.
Yet it is software that constitutes the fundamental rules for information 
processing, and thus for an information economy and an information society.
Massive processing power connected by ever­increasing bandwidth
is a skeletal infrastructure. Software determines how information is 
manipulated, where it flows, to whom and for what reasons.

­­United Nations Conference on Trade and Development (UNCTAD) 2003 p.95



The State of ICT and Software, 2010

“We can't solve problems by using the same kind of 
thinking we used when we created them.” – A. Einstein
 We have quite some problems in IT:

● $1.3T USD Enterprise IT spending
● 18% IT projects abandoned before production
● 55% “challenged” (late, lacking, broken)
● $500B USD is wasted due to “bad software”
● $3.5T USD anticipated value not delivered

 Proprietary software model is not sustainable

 Open Source is a new approach that can radically improve both 
IT and the businesses that use it

Reference: http://opensource.com/business/10/6/integral-innovation



Out of the Crisis – Deming (1982)

 Create constancy of purpose

 Adopt new philosophy/change

 Build quality in the first place

 Build relationships around loyalty 
and trust, not price

 Improve product and service 
constantly and forever

 Improve people w/training

 Replace supervision with 
leadership

 Drive out fear so that everybody can 
participate

 Break down barriers between 
departments; work as team

 Eliminate adversarial relationships

 Replace quotas, MBO, etc. with 
leadership

 Restore pride of workmanship by 
rewarding quality, not numbers

 Strongly support programs for self-
improvement

 Transformation is everybody’s job



The Long Tail of Open Source

Source: http://opensource.mit.edu/papers/mockusapache.pdf 

 OSS achieved first article sooner...
● With fewer bugs...
● That were fixed sooner...

 The trend continues...
● Xen Virtualization
● SE Linux
● GRASS/R/PostgreSQL
● MySQL
● JBoss ecosystem
● Eclipse
● Blender, Inkscape, GIMP, Ardour, Audacity, etc.

http://opensource.mit.edu/papers/mockusapache.pdf


Observed results—Quality

 Typical proprietary software would has 20-30 defects per 1,000 
Source Lines of Code (SLOC)
● Or 114,000 to 171,000 defects per 5.7 MLOC

 2004: Coverity finds 985 defects in Linux kernel
● 627 defects found in critical parts of the kernel
● 100% of “serious” defects fixed in 6 months

http://www.eweek.com/c/a/Linux-and-Open-Source/Linux-Kernel-
Review-Shows-Far-Fewer-Flaws/

 2005: Defect density down from 0.17 to 0.16
● Defect density declined 2.2%
● Code size increased 4.7%

http://www.internetnews.com/dev-news/article.php/3524911



Observed results—Quality

 2006: Average of 32 OSS programs is 0.434 per KLOC
● Perl @ 0.186 defects per KLOC
● GCC @ 0.202 per KLOC
● Python @ 0.372 per KLOC
● http://www.internetnews.com/stats/article.php/3589361

 No correlation between size and defect density
● No “black holes” in terms of quality

 LAMP defect density is currently 0.29 per KLOC
● PHP worst @ 0.474



Observed results—Quality

 2008: Average of 250 OSS programs is 0.33 per KLOC
● PHP was “perfect” with zero detectable defects
● 10 other projects also “perfect”

http://scan.coverity.com/report/Coverity_White_Paper-
Scan_Open_Source_Report_2008.pdf

 2009: Average of 280 OSS programs is 0.25 per KLOC
● 36 projects now “perfect”

http://scan.coverity.com/report/Coverity_White_Paper-
Scan_Open_Source_Report_2009.pdf

 2010: Accenture survey finds Quality is #1 reason why enterprise 
customers choose OSS (Cost is #5)

http://opensource.com/business/10/6/integral-innovation



“Whatever you do will be insignificant.  But it is 
very important that you do it!” – M. Gandhi



Protection v. Innovation

 Game theory predicts: more modules and more option value leads to 
more developers 
(http://www.people.hbs.edu/cbaldwin/DR2/BaldwinArchPartAll.pdf)

 More than 2M OSS developers working on more than 1B SLOC proves 
game theory is good theory 
(http://www.springerlink.com/content/q551lwg63762n24l/)

Developer 2
Developer 1 Don't Work Work

Don't Work 0,0 v, v­c
Work v­c, v v­c, v­c 

Developer 2
Developer 1 Don't Work Work on A Work on B

Don't Work 0,0 .5v, .5(v­c) .5v, .5(v­c)
Work on A .5(v­c), .5v .5(v­c), .5(v­c) v­.5c, v­.5c 
Work on B .5(v­c), .5v v­.5c, v­.5c  .5(v­c), .5(v­c)

v: value to developer
c: cost to developer



Upton's Path­based Model
Installation Based Path Based

Role of IT Supportive/Peripheral to Operation Integral part of Operation

Large, few, infrequent Small, many, frequent

Build, then install Prototype and evolve

Delivery of Value When a project is complete On-going

Standards in common use

Vendor/IT group Operation itself

Experimentation Limited Frequent opportunities

Project Size and 
Number

Development 
Approach

Source of 
Technology/ 
Software

Heavy use of proprietary 
interconnection code, proprietary 
standards

Primary Funct'l 
Concerns

Control, efficiency, 
accommodating all requirements 
at once

Integration, interconnection, 
flexibility, progressive delivery of 
req's

Locus of 
Technical Control

See http://www.people.hbs.edu/dupton/papers/pathbased­it/PATH.PDF 
Revised May 27, 1997

http://www.people.hbs.edu/dupton/papers/pathbased-it/PATH.PDF


Open Source Security—
NSA's SE Linux Project

 Built on 10 years of NSA's OS security research

 Application of NSA's Flask security architecture

 Cleanly separates policy from enforcement using well-defined policy 
interfaces

 Allows users to express policies naturally and supports changes

 Fine-grained controls over kernel services

 Transparent to applications and users

 Role-Based Access Control, Type Enforcement

 Initially rejected as “impossible”



Sustainable Security

 SE Linux succeeded with “The Open Source Way”
● 14 initial policies supported in Fedora Core 3
● 80+ policies supported in Fedora Core 4
● User-loadable policy management in Fedora Core 5
● Now thousands of protected apps, services, etc.

 Five years of RHEL4: Zero critical kernel exploits

 Three years of RHEL5: Zero critical kernel exploits

 Cloud computing and virtualization make security more important, not 
less!

 Breaking down barriers helped build better barriers!



Thank you!


	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Vital Statistics
	Slide 12
	Project to Product
	Contributors to Linux
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

