
Problem Identification for Structural Test Generation:
First Step Towards Cooperative Developer Testing

Xusheng Xiao
xxiao2@ncsu.edu

Department of Computer Science

North Carolina State University, Raleigh, NC, USA

ABSTRACT

Achieving high structural coverage is an important goal of
software testing. Instead of manually producing high-covering
test inputs that achieve high structural coverage, testers
or developers can employ tools built based on automated
test-generation approaches to automatically generate such
test inputs. Although these tools can easily generate high-
covering test inputs for simple programs, when applied on
complex programs in practice, these tools face various prob-
lems, such as the problems of dealing with method calls to
external libraries, generating method-call sequences to pro-
duce desired object states, and exceeding defined bound-
aries of resources due to loops. Since these tools currently
are not powerful enough to deal with these various prob-
lems in testing complex programs, we propose cooperative
developer testing, where developers provide guidance to help
tools achieve higher structural coverage. To reduce the ef-
forts of developers in providing guidance to the tools, we
propose a novel approach, called Covana. Covana precisely
identifies and reports problems that prevent the tools from
achieving high structural coverage primarily by determining
whether branch statements containing not-covered branches
have data dependencies on problem candidates.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Measurement, Reliability

Keywords

Structural test generation, dynamic symbolic execution, data
dependency, problem identification

1. RESEARCH PROBLEM
Achieving high structural coverage is an important goal

of software testing. Manually producing such test inputs is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

labor-intensive. To address the issue, tools built based on
automated test-generation approaches can be employed to
automatically generate test inputs, such as Dynamic Sym-
bolic Execution (DSE) [5, 6, 10] (also called concolic test-
ing [10]) and random approach [3, 7]. Although these tools
can easily achieve high structural coverage for simple pro-
grams, these tools face challenges in generating high-covering
test inputs to achieve high structural coverage when applied
on complex programs in practice. Our preliminary study [15]
shows that many statements or branches are not covered
due to two major types of problems: (1) external-method-
call problems (EMCP), where tools cannot deal with method
calls to external libraries to achieve high coverage; (2) object-
creation problems (OCP), where tools fail to generate se-
quences of method calls to construct desired object states
to cover certain branches. Our study also identifies bound-
ary problems (BP) as another important type of problems,
where tools exceed pre-defined boundaries on resources be-
fore achieving high coverage, often caused by loops.

Since these tools are imperfect in dealing with various
problems in complex programs without human intervention,
we propose a new methodology of cooperative developer
testing, where developers provide guidance to help the tools
address the problems. For example, to deal with BPs, devel-
opers can increase the pre-defined boundaries of resources or
limit the number of iterations that a loop should take. To
acquire developers’ guidance, the tools need to report the
encountered problems. For example, the tools can report all
the external-method calls in the program under test. How-
ever, the number of such problem candidates could be high,
and some of these problem candidates are not causes for the
tools not to achieve high structural coverage; these candi-
dates are referred to as irrelevant problem candidates. As an
example, the external-method call Console.WriteLine only
prints the string value of the argument.

To address the need of reducing the efforts of developers
in providing guidance to tools, we propose a novel approach,
called Covana [15]. Covana precisely identifies problems
that prevent the tools from achieving high structural cov-
erage and prunes irrelevant problem candidates using data
dependencies of branch statements containing not-covered
branches (referred to as partially-covered branch statements).
Covana consists of three main steps: (1) identify problem
candidates based on the types of problems, (2) assign sym-
bolic values to elements of the problem candidates (such as
return values of external-method calls) and perform forward
symbolic execution [12] using the generated test inputs of the
tools, (3) compute data dependencies of partially-covered

xxiao2@ncsu.edu

branch statements on problem candidates and prune prob-
lem candidates (called irrelevant ones) that partially-covered
branch statements have no data dependencies on.

2. APPROACH
We use Dynamic Symbolic Execution (DSE) [1,4–6,10,12]

as an illustrative example of automated test-generation ap-
proaches, due to recent growing research on DSE. DSE in-
struments and executes the program under test symbolically,
collecting constraints on program inputs to form path con-
ditions and negating part of the collected path conditions
to obtain new paths for further exploration. We concretize
Covana as an extensible framework that collects information
from DSE to identify different types of problem candidates,
assigns symbolic values to elements of the identified prob-
lem candidates, such as return values of external-method
calls, and collects the constraints on these symbolic values
from subsequently executed branches to determine whether
partially-covered branch statements have data dependencies
on problem candidates for their elements. We further pro-
pose three techniques that can be fed into Covana for iden-
tifying EMCPs, OCPs and BPs.

2.1 EMCP Identification
Problem Candidate Identification. We consider as

problem candidates only external-method calls whose argu-
ments have data dependencies for program inputs. Nor-
mally, external-method calls whose arguments have no data
dependencies for program inputs are method calls that print
constant string or put a thread to sleep for some time. These
method calls do not prevent DSE from achieving high struc-
tural coverage and can be safely pruned.

Data Dependence Analysis. In our preliminary study,
we observe that if the return values of external-method calls
are used to decide certain branches, these branches are very
likely not covered by the generated test inputs, since auto-
mated test-generation tools normally cannot explore called
external methods without instrumenting them. Hence, Cov-
ana assigns symbolic values to the return values of the identi-
fied external-method calls for computing data dependencies
for the return values. Covana prunes EMCP candidates if
none of partially-covered branch statements have data de-
pendencies on the candidates for their return values.

Uncaught Exception Analysis. Uncaught exceptions
thrown by external-method calls abort test executions, pre-
venting DSE from exploring remaining parts of the program
under test. To identify such external-method calls, Covana
collects exceptions during test execution and analyzes the
stack trace to extract external-method calls. If the remain-
ing parts of the program after the call sites of the external-
method calls are not covered, Covana reports these external-
method calls as EMCPs.

2.2 OCP Identification
Problem Candidate Identification. Since OCP re-

quires objects of a non-primitive type as program inputs, we
consider as problem candidates only program inputs whose
type is a non-primitive type, such as a user-defined type.
Covana assigns symbolic values to such program inputs and
all their fields for computing data dependencies. In addition,
Covana collects path conditions during the test execution for
further analysis.

Data Dependence Analysis. In our preliminary study,

00:for(int i = 0; i < input;i++) { ... }
01:if(input > 1000) { // simplified away after loop

02: // not-covered area }

Figure 1: Example of Boundary Problem (BP)

we observe that some branches may require only a specific
object state of only a field of the program inputs, and thus
there is no need to spend effort in providing sequences of
method calls for all the fields of program inputs. By com-
puting data dependencies of partially-covered branch state-
ments for the fields of program inputs, we identify some
fields of the program inputs as the OCP candidates.

Path Condition Analysis. To identify which field re-
quires guidance to provide desired object states, Covana
further analyzes the colleced path conditions that lead to
not-covered branches. From the path conditions, Covana
extracts the fields of program inputs and constructs a field
declaration hierarchy up to the program input. If a field
cannot be assigned with an object directly by invoking a
constructor or a public setter method of its declaring class,
the object state of the field can be changed only by invoking
other public state-modifying methods of its declaring class.
Hence, Covana reports its declaring class type as an OCP.
Otherwise, Covana continues to check the next field in the
hierarchy.

2.3 BP Identification
Motivating Example. In our preliminary study, we ob-

serve that if there exist some loops whose number of itera-
tions has data dependencies for program inputs, DSE keeps
negating the constraint to increase the number of iterations
for the loops. As a side effect, the constraints on program
inputs in subsequent executed branches are simplified away
(as illustrated with an example below), preventing DSE from
analyzing the constraints for exploring remaining parts of
the program.

Figure 1 shows a simplified example of BP. Assuming in an
execution, the concrete value of input is N . When the loop
terminates, the path condition must contain two constraints:
(1) N − 1 < input for the last loop iteration; (2) N >= input

for the loop termination. Combining these two constraints
implies N == input, which is in turn used to simplify input >

1000 to either true or false. To cover the not-covered area,
DSE has to negate the constraint for extending the loop until
input > 1000 is satisfied, which probably cannot be achieved
before DSE exceeds the pre-defined boundary on the number
of exploration paths.

Problem Identification. To identify such situations,
every time DSE selects a particular branch and negates its
constraint, Covana considers the variables involved in the
constraint as problem candidates. In the example shown in
Figure 1, input is identified as the problem candidate. If
later in this exploration, DSE exceeds a pre-defined bound-
ary on resources, and some partially-covered branch state-
ments have data dependencies for the variable input, Covana
considers the problem candidate as a BP.

3. RELATED WORK
Pavlopoulou and Young [8] developed a residual cover-

age monitoring tool for Java, which provides richer feedback
from deployed software and aims to reduce the performance
overhead for gathering structural coverage from deployed
software. Although their approach analyzes residual struc-
tural coverage, their approach does not provide a way to an-

alyze the coverage, while our approach analyzes the residual
structural coverage gathered from test-generation tools to
filter out irrelevant problem candidates. Dincklage and Di-
wan [14] propose an analysis language and build a system to
produce reasons when the program analysis fails to produce
desirable results. Although our approach is remotely re-
lated to their approach in terms of helping explain causes of
residual structural coverage in the form of problems, our ap-
proach focuses on a significantly different problem and pro-
poses significantly different techniques for addressing unique
challenges in identifying problems for structural test gener-
ation. Anand et al. [2] propose an approach that identi-
fies problematic external-method calls in symbolic execu-
tion by carrying out static analysis to determine whether an
external-method call receives symbolic values as arguments.
To identify EMCPs, our approach considers not only the
data dependencies of arguments of external-method calls for
program inputs, but also the data dependencies on external-
method calls for their return values.

4. RESULTS AND CONTRIBUTIONS
Our work is the first to provide advice to developers by us-

ing dynamic analysis results for automated test-generation
tools. We implemented the two techniques of identifying
EMCPs and OCPs [15], and conducted evaluations on xU-
nit [16] and QuickGraph [9]. Our results show that Covana
effectively identifies 43 EMCPs out of 1610 EMCP candi-
dates with only 1 false positive and 2 false negatives, and
155 OCPs out of 451 OCP candidates with 20 false positives
and 30 false negatives.

Besides identifying problems for DSE, the output of our
approach can also assist other test-generation approaches.
The first example is to assist automatic mock object gen-
eration. Since Covana greatly reduces the number of ir-
relevant problem candidates of EMCP, thus reducing the
candidate space, it becomes feasible for generating mock
objects [13] for all the external-method calls identified as
EMCPs. As another example, a random testing approach
can assign more probabilities on exploring the object types
reported by Covana as OCPs, increasing the chances to
achieve higher structural coverage in shorter time. Advanced
method-sequence-generation approaches [11] can also be used
to address OCPs to increase coverage.

In our evaluations of identifying EMCPs and OCPs, we
identify two issues that affect the effectiveness of our ap-
proach: (1) static fields: the static fields are initialized
inside the declaring class and may be later used by some
branches. Some of these branches are not covered because
the value of a static field is changed by the tests executed
before the current test; (2) concrete argument for an
external-method call: some of such external-method calls
use constant values to access external environment states
and cause some branches not to be covered.

Although we do not encounter other issues in our evalua-
tions, there are still some potential issues that may affect the
effectiveness of our approach: (1) argument side effect:
some external-method calls may have side effects on the re-
ceiver objects or method arguments have data dependencies
on program inputs, causing some subsequent branches not
to be covered; (2) control dependency: extending our
approach to consider control dependency may improve the
effectiveness of our approach in some cases; (3) static anal-
ysis: our approach currently computes dynamic data depen-

dencies based on the executed paths, which may miss some
data dependencies on unexecuted paths. Employing static
analysis to analyze all the paths is one option to solve the
problem. Nevertheless, due to the complexity of programs,
static analysis may produce false positives on detecting data
dependencies, which in turn affect the effectiveness of our
approach. We plan to conduct experiments to evaluate the
effectiveness of incorporating static analysis.

We have started working on the implementation of the
third technique to identify BPs and plan to evaluate this
new technique. We are also working on a novel visualization
approach to better assist developers in locating identified
problems and providing guidances.

5. REFERENCES
[1] S. Anand, P. Godefroid, and N. Tillmann.

Demand-driven Compositional Symbolic Execution. In
Proc. TACAS, pages 367–381, 2008.

[2] S. Anand, A. Orso, and M. J. Harrold.
Type-Dependence Analysis and Program
Transformation for Symbolic Execution. In Proc.
TACAS, pages 117–133, 2007.

[3] C. Csallner and Y. Smaragdakis. JCrasher: An
Automatic Robustness Tester for Java.
Software—Practice & Experience, pages 1025–1050,
2004.

[4] P. Godefroid. Compositional Dynamic Test
Generation. In Proc. POPL, pages 47–54, 2007.

[5] P. Godefroid, N. Klarlund, and K. Sen. DART:
Directed Automated Random Testing. In Proc. PLDI,
pages 213–223, 2005.

[6] J. C. King. Symbolic Execution and Program Testing.
Commun. ACM, 19(7):385–394, 1976.

[7] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-Directed Random Test Generation. In Proc.
ICSE, pages 75–84, 2007.

[8] C. Pavlopoulou and M. Young. Residual Test Coverage
Monitoring. In Proc. ICSE, pages 277–284, 1999.

[9] QuickGraph, 2008. http://www.codeproject.com/KB
/miscctrl/quickgraph.aspx.

[10] K. Sen, D. Marinov, and G. Agha. CUTE: a Concolic
Unit Testing Engine for C. In Proc. ESEC/FSE, pages
263–272, 2005.

[11] S. Thummalapenta, T. Xie, N. Tillmann,
P. de Halleux, and W. Schulte. MSeqGen:
Object-Oriented Unit-Test Generation via Mining
Source Code. In Proc. ESEC/FSE, August 2009.

[12] N. Tillmann and J. de Halleux. Pex-White Box Test
Generation for .NET. In Proc. TAP, pages 134–153,
2008.

[13] N. Tillmann and W. Schulte. Mock-object Generation
with Behavior. In Proc. ASE, pages 365–368, 2006.

[14] D. von Dincklage and A. Diwan. Explaining Failures
of Program Analyses. In Proc. PLDI, pages 260–269,
2008.

[15] X. Xiao, T. Xie, N. Tillmann, and J. de Halleux.
Precise Identification of Problems for Structural Test
Generation. In Proc. ICSE, 2011.

[16] xUnit, 2007. http://www.codeplex.com/xunit.

http://www.codeplex.com/xunit

	Research Problem
	Approach
	EMCP Identification
	OCP Identification
	BP Identification

	Related Work
	Results and Contributions
	References

