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ABSTRACT
The process of scientific data analysis in high-performance com-
puting environments has been evolving along with the advancement
of computing capabilities. With the onset of exascale computing,
the increasing gap between compute performance and I/O band-
width has rendered the traditional method of post-simulation pro-
cessing a tedious process. Despite the challenges due to increased
data production, there exists an opportunity to benefit from “cheap”
computing power to perform query-driven exploration and visual-
ization during simulation time. To accelerate such analyses, ap-
plications traditionally augment raw data with large indexes, post-
simulation, which are then repeatedly utilized for data exploration.
However, the generation of current state-of-the-art indexes involve
a compute- and memory-intensive processing, thus rendering them
inapplicable in an in situ context.

In this paper we propose DIRAQ, a parallel in situ, in network
data encoding and reorganization technique that enables the trans-
formation of simulation output into a query-efficient form, with
negligible runtime overhead to the simulation run. DIRAQ begins
with an effective core-local, precision-based encoding approach,
which incorporates an embedded compressed index that is 3− 6x
smaller than current state-of-the-art indexing schemes. DIRAQ
then applies an in network index merging strategy, enabling the cre-
ation of aggregated indexes ideally suited for spatial-context query-
ing that speed up query responses by up to 10x versus alternative
techniques. We also employ a novel aggregation strategy that is
topology-, data-, and memory-aware, resulting in efficient I/O and
yielding overall end-to-end encoding and I/O time that is less than
that required to write the raw data with MPI collective I/O.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing Methods— in-
verted index, aggregation; D.4.2 [Storage Management]: Sec-
ondary storage—data compression, parallel storage
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1. INTRODUCTION
In high-performance computing (HPC), the concept of in situ

processing, or processing data at application run time and in ap-
plication memory, is one of increasing importance. The traditional
approach of performing data processing, analysis, etc. as a post-
processing step is becoming a rate-limiting factor as application
data sizes increase faster than I/O capabilities. Recent research has
been investigating the design space and implications of in situ pro-
cessing and data staging frameworks to facilitate this model [1–3,
25, 33]

While the concept of in situ processing has been realized in such
areas as visualization [19, 24, 31] and analysis frameworks [33], in
this paper we focus specifically on index generation. Such index-
ing enables the acceleration of tasks, such as exploratory and query-
driven analysis, that may not themselves be amenable to in situ pro-
cessing, thus indirectly reducing time-to-analysis. This approach to
supporting query-driven analytics for large-scale data has only just
begun to be studied. Recently, the bitmap indexing technique Fast-
Bit [21,28] has been applied in parallel with FastQuery [5,8,9] and
extended to demonstrate indexing in an in situ context [17].

However, in order to extend in situ indexing to the production
context of high core count application runs, several challenges must
first be overcome. Most index generation processes are both com-
putationally expensive and storage intensive, incurring significant
processing and I/O overhead. These are opposed to one of the
central goals of in situ computation: to minimally disturb appli-
cation run time. Furthermore, as indexing in a global context is
prohibitively expensive due to the need for global coordination,
current methods of index generation produce fragmented indexes
across compute resources, which significantly increases query re-
sponse time. Related to these overheads is the memory-intensive
nature of indexing, placing hard constraints on the memory over-
head of indexing and limiting the degree of aggregation that can
take place.

To address these challenges, we propose a methodology for Data
Indexing and Reorganizing for Analytics-induced Query process-
ing (DIRAQ). The following contributions enable us to make in-
roads towards a storage-lightweight, resource-aware data encoding
technique that incorporates a query-efficient index:
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Storage-lightweight, Query-optimized Data Encoding We describe
an encoding technique that converts raw floating-point data
into a compressed representation, which incorporates a com-
pressed inverted index to enable optimized query access, while
also exhibiting a total storage footprint less than that of the
original data. We exploit the spatio-temporal properties of
the data by leveraging our previous work with ALACRITY [16],
augmenting it with a highly-compressed inverted index using
a modified version of the PForDelta compression [34] algo-
rithm.

Scalable, Parallel Data Reorganization For fixed-size groups of
processes, we “defragment” indexes to optimize query per-
formance by developing an in network aggregation and merge
technique tailored to our encoding, which distributes the com-
putation equally among all compute cores in the group and
allows arbitrary selection of aggregator cores to gather/write
the resulting data. This way, we avoid the pitfalls of serializ-
ing the encoding process at various stages.

Resource-aware Aggregation We additionally make our group-
wise indexing resource-aware, dynamically learning optimal
data paths and choices of aggregators through per-group neu-
ral network modeling that supports online feedback. The op-
timization space for the model is constrained by the available
memory, ensuring memory constraints are not violated.

Our proposed method shows promising results on 9 datasets from
the FLASH astrophysics simulation [11] and 4 datasets from S3D
combustion simulation [7]. Our encoding reduces the overall stor-
age footprint versus the raw data by a factor of 1.1–1.8x, and versus
FastQuery-indexed data by 3–6x. Our scalable reorganization and
aggregation method combined with our encoding allows up to 6x
to-disk throughput improvement compared to MPI-IO on the raw
data. Finally, query performance on our defragmented indexes is
improved by up to 10x versus FastQuery-generated bitmap indexes.

2. RELATED WORK
In this section we cover previous work related to in situ process-

ing, in situ indexing and aggregation strategies for I/O.
The onset of petascale and exascale computation has seen a sig-

nificant growth in works that encompass simulation-time process-
ing relating to in situ and in network processing [4, 19, 31], along
with several data staging systems such as JITStaging [1], DataStager
[3], DataTap [2], PreDatA [33] and GLEAN [25] that explore move-
ment of simulation data to co-located clusters for processing. The
DIRAQ pipeline has been carefully designed to complement staging-
driven approaches for generating indexes; parts of the index merg-
ing process can be offset to staging routines, but is not the focus of
this paper.

Distributed and parallel indexing itself has been well researched
in the database community. The majority of the indexing tech-
niques are variants of the commonly used B-Tree indexing tech-
nique, which have been shown to have sub-optimal performance for
many workloads over read-only scientific datasets, when compared
to other techniques such as bitmap indexing [27]. The parallel in-
dexing scheme FastQuery [5,8,9] and subsequent in situ work [17],
which extend the WAH-compressed bitmap indexing method Fast-
Bit [21,28], share the same overarching goal as DIRAQ. However,
DIRAQ differs in that it utilizes in situ index aggregation over a
larger spatial context, instead of concatenating indexes from each
core, making it more suitable for analytics, and because it explicitly
addresses issues such as including network aggregation and limited
I/O throughput.

In contrast to a post-processing context, performing indexing in
situ demands special attention to scalable I/O, an area with much
prior work. MPI collective I/O is the canonical approach to this
problem, which typically incorporates a two-phase I/O technique [23]
to aggregate data into fewer, larger requests to the filesystem. This
principle has been refined in various ways, including a 3-phase
collective I/O technique with hierarchical Z-order encoding [18],
and pipelined aggregation enabling the overlap of computation and
threaded I/O [12, 13]. However, while these approaches are well-
suited to a variety of common I/O patterns, indexing introduces an
irregular access pattern. To overcome this, we opt for a customized
I/O aggregation strategy that includes in network merging of core-
local encoded data.

As for optimizing the I/O aggregation process, recent work has
been performed on auto-tuning the number of aggregators involved
in MPI collective I/O [6]. Depending on the amount of data writ-
ten out with each group, they either merge or split process groups
(indirectly changing the aggregator ratio) to better utilize the avail-
able I/O bandwidth. In this paper, we group compute processes
that belong to the same processor set (pset) since I/O forwarding
is done on a per-pset level. While they use process mapping based
on topology, we employ the aggregator placement to be topology-
aware as well. Additionally, our method tunes aggregators within a
group, rather than changing the underlying group size.

3. BACKGROUND

3.1 ALACRITY - Indexing for Scientific Data
We use our previous work with ALACRITY [16] as the starting

point for indexing in DIRAQ. ALACRITY is a storage-lightweight
indexing and data reduction method for floating-point scientific
data that enables efficient range query with position and value re-
trieval. Specifically, ALACRITY is optimized to identify posi-
tions satisfying range conditions (e.g. “temperature > 2500”) and
efficiently retrieves the values associated with those points. It achieves
this by utilizing a byte-level binning technique to simultaneously
compress and index scientific data. Because ALACRITY inte-
grates data reduction with indexing, it exhibits a much lower stor-
age footprint relative to existing indexing methods. For instance,
while ALACRITY’s total footprint (data + index) is consistently
about 125% of the raw data for double-precision datasets, a typical
FastBit [26] encoding over the same data requires ≈ 200%, and a
B+-Tree may require more than 300% [27].

The key observation in ALACRITY is that, while floating-point
datasets have a large number of unique values, the values are still
clustered and do not span the entire floating point domain. If we
examine the most significant k bytes of these floating point val-
ues (typically k = 2), this value clustering translates into a list with
much lower cardinality. This is because the IEEE floating point
format defines the highest k bytes (which we denote as high-order
bytes) to contain the sign bit, exponent bits, and most significant
mantissa bits of the value. The high-order bytes will therefore ex-
hibit lower cardinality than the low-order bytes, which typically
contain much more variation and noise.

ALACRITY leverages this observation by binning on the high-
order bytes of the data. Because the exact high-order bytes are
stored as bin “header values,” this information does not need to be
repeated for each value, and so the data is substantially reduced by
storing only the low-order bytes for each datapoint. As a property
of the floating-point format, each bin contains points belonging to
a single, contiguous value range. Therefore, by properly ordering
the bins, range queries can be answered by reading a contiguous
range of bins in a single, contiguous read operation, significantly
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reducing the number of seeks necessary to support value retrieval.
However, because the binning operation rearranges the values,

an index is required to maintain the original ordering. In the origi-
nal paper, we explore two alternatives: a “compression index” and
an inverted index. The compression index was shown to be ef-
fective in providing data compression, but is not appropriate for
querying, and so we do not consider it in this paper. The inverted
index, while larger, is still lightweight, with a storage requirement
of only 50% of the original data size for double-precision data, and
is effective for querying.

While ALACRITY works well in the context of serial indexing,
we must develop additional methods in order to support parallel
indexing in DIRAQ. In particular, although ALACRITY’s total
storage size is notably smaller than previous methods, it still rep-
resents a non-trivial I/O overhead beyond raw data, and would be
expensive if applied as-is for in situ indexing. Additionally, index
merging was not previously considered, as ALACRITY operated
using full-context data. However, in this paper, we analyze the
end-to-end performance of indexing, starting from core-local data
generation to data capture on storage devices.

3.2 PForDelta - Inverted Index Compression
PForDelta [34] (standing for Patched Frame-of-reference Delta)

is a method for efficiently compressing inverted indexes, and is fre-
quently used in the context of indexing and search over unstruc-
tured data, such as documents and webpages [29,32]. As ALACRITY
presents a viable inverted index-based method for encoding scien-
tific data, it presents a perfect opportunity to further reduce storage
overhead by applying PForDelta.

PForDelta encoding operates on a stream of sorted integer val-
ues, divided into fixed-size chunks. Each chunk is transformed to
encode the first value (the frame of reference) and the differences
between consecutive values. A fixed bit width b is then selected
to encode the majority of deltas – those remaining are stored as
exceptions in a separate exception list. The majority of deltas typi-
cally require a far fewer number of bits to encode than the original
data, and a relatively small chunk size (128 elements in the original
work) enables a highly adaptive, per-chunk selection of b.

4. METHOD

4.1 Overview
Figure 1 illustrates the logical flow behind DIRAQ in situ index-

ing. Our method consists of the following components:

1. Storage-lightweight, query-optimized data encoding that
produces a compressed form of the data with an integrated in-
dex, combining both data and index compression. By achiev-
ing a low storage requirement while also supporting opti-
mized range queries, this encoding approach enables us to
surmount the obstacle that the HPC I/O bottleneck repre-
sents to in situ indexing. This component is explained in
Section 4.2.

2. Scalable, parallel data reorganization, which reduces I/O
time and improves post-simulation query performance by ag-
gregating encoded data, without incurring unacceptable global
communication costs. For comparison, existing indexing meth-
ods produce either a single, global index, or a highly-fragmented
set of per-core indexes. Unfortunately, the former can only
be accomplished with post-processing or expensive global
communication, and the latter results in degraded query per-
formance (as demonstrated in Section 5.2). In contrast, our
group-level index aggregation technique largely avoids both

Figure 1: Overview of the DIRAQ indexing methodology,
with lightweight encoding1,2, scalable index aggregation8,9 and
resource-aware dynamic aggregator selection 6.

of these drawbacks. We also leverage the hardware-level
RMA support in modern HPC clusters to perform fast in net-
work merging. These aspects of DIRAQ are discussed in
Section 4.3.

3. Resource-aware dynamic aggregator selection, which in-
corporates the inherent network topology and available mem-
ory constraints of a running system to improve the choice
of aggregator cores at runtime. Leveraging this information
helps to achieve improved performance over MPI-IO two-
phase I/O [10]. More detail is given in Section 4.4.

4.2 Lightweight, Query-optimized Data Encod-
ing

The first step for DIRAQ is to address the fundamental challenge
of in situ processing, and indexing in particular: because simula-
tion I/O blocking time is already a serious concern today, any in
situ process must ensure this metric is not substantially impacted.
However, while there exist parallel indexing methods for scientific
data, no current method has addressed this issue sufficiently to op-
erate within the context of a running simulation. The root of the
problem is two-fold. First, current indexing methods inherently
increase total storage footprint (data + index), commensurately in-
creasing I/O times. Second, computation time for current indexing
methods dominates even the I/O time.

We address this problem in DIRAQ by extending ALACRITY,
a storage-lightweight indexing method with integrated data com-
pression, by augmenting it with index compression to achieve even
higher overall compression. By thus reducing both components of
the output, we reduce the storage footprint to 55%-90% (a com-
pression ratio of 1.1-1.8x) for 9 variables from FLASH [11] sim-
ulation data (Table 1). Note that these compression ratios include
both index and data; this implies the data encoding can simulta-
neously support efficient range queries while also reducing total
simulation I/O, a win-win scenario.

As with ALACRITY, the DIRAQ query-optimized encoding
format enables two-sided range queries of the form a < var < b to
be evaluted efficiently (a or b may also be −∞ or +∞, respectively,
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allowing one-sided range queries, as well). Given such a con-
straint, DIRAQ can retrieve the matching values (value retrieval)
and/or the matching dataset positions (position retrieval). Addi-
tionally, DIRAQ supports an approximate query mode that accepts
a bounded per-point error in order to perform an index-only query,
which has benefits to query performance. These query types are
discussed in more detail in a previous paper [16]. In pseudo-SQL
syntax, the index supports queries of the forms:

SELECT var [and/or] position WHERE a < var < b
SELECT ∼var [and/or] position WHERE a <∼var < b

An overview of the encoding format produced by DIRAQ is de-
picted in Figure 2. The process of binning is largely similar to
that presented in the ALACRITY paper [16], as reviewed in Sec-
tion 3.1, although some modifications have been made (including
a generalization to support bit-level, rather than byte-level, adjust-
ment of the high/low-order division point). However, the major
extension that enables this encoding methodology to be used for in
situ indexing is the incorporation of index compression, and thus
this component is described in detail next.

4.2.1 Inverted Index Compression
In DIRAQ, an inverted index is used to map binned values to

their (linearized) positions in the original dataset, referred as “record
IDs,” or “RIDs.” Within each bin, we keep the low-order byte ele-
ments sorted by ascending RID, which enables us to apply PForDelta
to the inverted index of each bin. Thus, the problem of index com-
pression in DIRAQ can be reframed as compressing sorted lists
of unique integers; the chosen method can then be applied to each
bin’s inverted index independently to achieve overall index com-
pression.

Instead of using general-purpose compression routines, we use
a modified version of PForDelta to leverage the specific properties
of our inverted index. As stated in Section 3.2, PForDelta operates
on a sorted list of integers, which matches the nature of DIRAQ’s
inverted indexes. Furthermore, PForDelta achieves high compres-
sion ratios for clustered elements; in DIRAQ, the inverted index
RIDs typically exhibit good clustering, as these spatial identifiers
are grouped by bin, and thus correspond to similar-valued points,
which tend to cluster spatially.

We make modifications to PForDelta to achieve higher compres-
sion ratios for our application. The first difference is in the method
for specifying the positions of exceptions in the delta list for patch-
ing. As opposed to the original approach, which uses a linked list
of relative offsets embedded in the delta list, we instead leverage
the fact that all RIDs are unique, implying that all deltas are strictly
positive. This permits us to place 0’s in the delta list to mark ex-
ception positions, as they do not normally appear, thus eliminating
the need for an embedded linked list and forced exceptions. These
0’s have low overhead, as they are bit-packed along with the deltas.

The second modification we implement is to deal with over-
head when compressing small chunks. While our implementation
maintains the fixed 128-element chunk sizes used in the original
PForDelta work, the last chunk may have fewer elements. If the
original input stream (inverted index bin, in our case) has far fewer
elements than one chunk (128), PForDelta’s chunk metadata may
become dominant, reducing compression ratios or even slightly
inflating the index. This situation occurs for datasets with high
variability (when modeling turbulence for example), which leads
to a large number of small bins. To prevent this issue from un-
duly harming overall compression, we add a dynamic capability in
PForDelta to selectively disable compression of chunks that are not
successfully reduced in size.

Figure 2: An overview of how raw floating-point data is en-
coded by DIRAQ for compact storage and query-optimized ac-
cess. CII stands for compressed inverted index.

4.2.2 Effectiveness of Index Compression
As a preliminary microbenchmark, we evaluate the overall through-

put and compression ratios of DIRAQ’s encoding on 6 single-
precision and 3 double-precision datasets from the FLASH [11]
simulation. The test platform is the Intrepid BlueGene/P super-
computer. For each dataset, we take 256 compute cores worth of
data, and encode each independently (simulating the core-local in-
dexing that will be used in the next section), reporting the mean
statistics in Table 1.

Compression Ratio: In our microbenchmarks, we observed in-
dex compression ratios from 3x to 20x across different variables
and different refinement levels in the FLASH dataset. We observe
that the compression ratio directly correlates with the number of
bins in the dataset encoding, as shown in Table 1. With fewer bins,
each bin’s inverted index contains a larger portion of the RIDs for
the dataset. This yields a denser increasing sequence of RIDs per
bin, and thus smaller delta values, which ultimately results in a high
compression ratio due to PForDelta bitpacking with 1 or 2 bits per
element. Even with less compressible datasets like vely,velz, we
observe ≈ 2.5x compression of the index.

Overall, this level of compression results in substantial I/O re-
duction, and also improves aggregation performance (as discussed
in Section 4.3). For comparison, when encoding these same datasets
using the original ALACRITY method, total storage footprints
(data + index) are all around 150% for the single-precision datasets,
and 125% for those with double-precision. Over the datasets we
evaluate, we observe effective I/O throughput to be increased by a
factor of 1.5−2.5x based on this data encoding method

Throughput: The indexing throughput is also dependent on the
number of bin values, but to a lesser degree as compared to the
compression ratio (max-over-min variation of about 1.4x vs. about
10x). This is primarily due to the use of fixed-size chunks dur-
ing index compression, each of which is processed independently.
However, since the compression is considerably faster than I/O ac-
cess and has the net result of reducing the data footprint, the varia-
tion in indexing throughputs of DIRAQ do not contribute to a no-
ticeable variation in end-to-end times , unlike with other compute-
intensive indexing techniques [8, 9].

4.3 Scalable, Parallel, In Situ Index Aggrega-
tion

In the simplest case, we can parallelize our indexing method by
applying it to all compute cores simultaneously, generating core-
local indexes, similar to FastQuery. However, this method of par-
allelization produces fragmented indexes, which are poor for query
performance. Queries must necessarily process each core-local in-
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Table 1: Effect of dataset entropy (number of bins) on index
compression ratio and total size on 256 processes each indexing
1 MB of data on BG/P.

Dataset Average Index Total Size Encoding
Bins Compression (% of Raw) Throughput

Ratio (MB/s)
flam 8 19.8 55 18.7
pres 1 20.6 54 18.7
temp 7 17.1 55 18.7
velx 339 4.3 78 17.6
vely 1927 2.4 90 14.0
velz 1852 2.5 89 14.1

accx∗ 172 3.3 88 15.1
accy∗ 166 3.3 88 15.0
accz∗ 176 3.3 88 15.0

∗ double-precision datasets.
+ total data written out as a % of original raw data.

dex in turn, incurring numerous disk seek costs and other over-
heads. Thus, it is desirable to build an index over aggregated data.
However, performing global data aggregation is not scalable due
to expensive global communication, so we instead consider group-
level index aggregation, where compute nodes are partitioned into
fixed-size groups, balancing the degree of index fragmentation (and
thus query performance) with I/O blocking time (and thus simula-
tion performance).

A particular challenge in building an index over a group of pro-
cesses is the distribution of computation over the group. Forward-
ing per-core data to a small number of “aggregator cores” to be in-
dexed poorly utilizes compute resources. Instead, we make the ob-
servation that core-local DIRAQ indexes can be merged efficiently.
However, merging the indexes solely using aggregator cores again
underutilizes the remaining compute cores, which sit idle during
that time.

Given these challenges, we opt for a third option, shown in Fig-
ure 3, that eliminates compute bottlenecks at the aggregator cores.
After each core in the group locally encodes its data, a group “leader”
core collects the local index metadata and computes the group in-
dex metadata. The group index metadata is then used by each com-
pute core to implicitly merge the indexes in network by using Re-
mote Memory Access (RMA), thereby materializing the group in-
dex fully formed across any number of chosen aggregator cores.
Using this method, aggregators and all the other group cores per-
form the same degree of computation, as well as avoid per-core
file writing, at the small cost of a metadata swap (which would be
necessary, regardless).

Having given an overview of the aggregation method in DIRAQ,
we now examine each step in more detail. Note that, while we fo-
cus on index aggregation this section, because DIRAQ’s encod-
ing tightly integrates the index and low-order bytes, an equivalent
aggregation and merging process is also applied to the low-order
bytes. Thus, unless specifically noted, every step in the follow pro-
cedure is applied to both the index and low-order bytes simultane-
ously, but we discuss in terms of the index for brevity.

4.3.1 Building the group index
The DIRAQ encoding technique is especially suited for in situ

index aggregation, as it enables efficient determination of the group
index layout before any actual data or index is transferred. Recall
that our encoding bins data according to values that share the same
most significant bits (called the bin’s “header value”). Because this
number of significant bits is fixed across all cores, if bins with the
same header value appear on multiple cores, all these bins will have

Figure 3: A logical view of group index aggregation and writ-
ing.

equivalent value boundaries, and will furthermore be part of the
same bin in the group index, greatly simplifying the index merge
operation. Furthermore, because the data within a bin is ordered
by RID, and we assign a contiguous range of RIDs to each core,
merging several local bins into a group bin is a simple matter of
concatenation. Note that “bin” here refers to both the bin’s low-
order bytes and its associated inverted index.

The process for building the group layout on the leader core
is shown in Figure 4. First, the layouts for all core-local indexes
within the group are collected to a “group leader” core. Next, the
leader takes the union of all bin header values for the group, and
then determines the offset of each local index bin within the cor-
responding group index bin, with bins from cores with lower RID
ranges being filled first. Finally, the newly-constructed group lay-
out is disseminated back to the compute cores, along with the set of
bin offsets specific to each core (referred to as “bin placements”).
Note that indexes could also be aggregated across groups, by ex-
changing bin metadata between group leaders. We expect to study
this possibility in future work.

1. Receive local index layouts 

2. Determine all bin header values 

, , , 

3. Create group index layout 

4. Determine group bin placements for each core 

From Core 2 

From Core 1 

To Cores 1 & 2 

To Core 2 

To Core 1 

Figure 4: Steps for building a group index layout on the leader
core (shown for a group size of 2, generalizable for more cores).

The end result is that each core obtains a complete view of the
group index to build, as well as precise locations for its local index
bins within that group index. In other words, the cores now collec-
tively have a logical view of how the aggregation should proceed.
It is important to note that this cooperative layout construction pro-
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cess constitutes only a small part of the overall end-to-end indexing
time, and so we focus the bulk of our optimization efforts on the
more time-intensive aggregation and write phases next.

4.3.2 Index aggregation via in network memory reor-
ganization

After all cores in the group receive the group index layout and
core-specific bin placements, the cores proceed to transfer their lo-
cal bins to the appropriate locations within the group index. This
mapping is straightforward at this point; the bin placements include
an offset and length within the group index for each local bin. How-
ever, simply writing at these offsets to a shared file will result in
N ·B qualitatively random write operations hitting the parallel file
system servers at once (where N is cores per group, and B is average
local index bins per core). With N ≈ 64 and B≈ 4,000+, typical in
our experiments with FLASH, the resultant 250,000+ I/O requests
per group would be prohibitively expensive, and an alternative ap-
proach must be sought. Furthermore, the straightforward usage of
MPI-IO would necessarily require numerous, small writes and high
communication overhead, corresponding to the highly interleaved
mapping between core-local and group indexes.

Our solution leverages a cooperative in network memory reorga-
nization technique to utilize the RMA capabilities of modern net-
work infrastructure to perform index merging during network trans-
fer. Using this method, the system can materialize the group index
fully-formed across the memory of a subset of the compute cores
in the group, called the “aggregator cores.” The process proceeds
as follows:

1. A set of aggregator cores with sufficient memory to collec-
tively accommodate the group index is selected. This is done
by piggybacking available memory statistics from each core
on the existing local layout messages sent to the group leader,
and having the leader disseminate the selection along with
the group index layout and bin placements. We examine the
importance of selecting topologically-separated and memory-
balanced aggregators in Section 4.4; for now, the specific se-
lection criteria are not pertinent.

2. After this selection, the memory commitment needed for the
group index is balanced as evenly as possible across the ag-
gregators, which then expose the required memory to all the
compute cores for RMA operations.

3. Finally, all compute cores treat the exposed memory on the
aggregators as a single, contiguous memory buffer, and use
their bin placements and knowledge of the group index lay-
out to inject their local index bins onto the proper aggre-
gators at the right offsets. These data transfers utilize MPI
one-sided RMA operations, using relaxed consistency and
reduced-locking hints to achieve increased performance.

4. After RMA synchronization is completed, the group index
is fully formed on the aggregators, which then simply write
out the entire contents of their exposed memory window in
sequential chunks on disk, completing the process.

By circumventing the need for an in-memory index merge, the
computational load on the aggregators is reduced (which is impor-
tant because there are few of them relative to the number of cores
in the group). Furthermore, this approach also eliminates the need
for temporary swap buffers required during an in-memory merge,
and so is more robust in the face of limited spare memory available
under many real-world simulations.

4.4 Optimizing index aggregation using memory-
and topology-awareness

Algorithm 1: Topology-aware aggregator assignment on group
leader processes

Input : n: Number of processes in the group.
Input : M[1, ...,n]: Free memory size of each process in the

group.
Input : d: Average amount of data per-core.
Input : b: Average number of bins per-core.
Output: a: Estimated ideal number of aggregators.
Output: t: Estimated neural-net time.
Output: R[1, ...,a]: Ranks of aggregators.
Output: O: Start and end offsets associated with each

aggregator.

1 minAggs = getMinAggregators(M,n,d)
2 maxAggs = getMaxAggregators(M,n,d)
3 t = ∞

4 // Estimate the optimal number of
5 // aggregators using trained model
6 for numAggs = {minAggs, ..., maxAggs} do
7 estimatedTime = NNEstimate(numAggs,d,b)
8 if t > estimatedTime then
9 t = estimatedTime

10 a = numAggrs
11 end
12 end
13 // Try placing aggregators using
14 // topology-aware settings
15 for aggSet ∈ {topologyAwareAggregatorSetList} do
16 if fit (a,aggSet,M) == TRUE then
17 R = assign (a,aggSet)
18 O = generateOffsets (a,R,d)
19 return {a, t,R,O}
20 end
21 end
22 // Generate a valid random placement
23 R = generateRandomAggregators (a, M)
24 O = generateOffsets (a,R,d)
25 return {a, t,R,O}

One of the most common techniques employed for I/O is two-
phase MPI collective I/O, which performs a data aggregation phase
prior to writing. However, the number and placement of aggrega-
tors within MPI, which can be tuned using “hints,” does not take
topology considerations into account, leading to network hotspots
and other performance degradations [25]. Hence, recent works
have explored topology-aware mapping for BlueGene/P [25] and
tuning the aggregation ratio [6, 25].

However, these static techniques are not directly applicable within
DIRAQ for the following reasons. First, the use of index compres-
sion results in varying data sizes written out by process groups.
Second, with DIRAQ, the aggregation phase not only includes a
simple data transfer, but also an in network index merging strategy.
Thus, the in network aggregation performance is based on a number
of changing parameters, such as differing bin layouts across write
phases, and so requires a more dynamic approach.

To account for these time-variant characteristics in DIRAQ, as
well as the highly interleaved (core-local) I/O access patterns DI-
RAQ produces, data aggregation requires a strategy in which the
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number of aggregators/writers evolve according to simulation data
characteristics. In DIRAQ, the group leaders are a natural fit for
driving this process, as they have a complete view of the aggregated
index and are responsible for distributing aggregator information to
the other cores in the group.

We build an optimization framework that can dynamically select
the number of aggregators, given the group index and low-order
byte layout, while leveraging the work done in GLEAN [25] to
contol aggregator placement. Since this layout has numerous, in-
teracting characteristics, our initial study found that rigid, linear
models insufficiently captured the relationship between group lay-
out and I/O. Hence, we train a neural network, bootstrapping offline
to model and optimize DIRAQ aggregation parameters. Our choice
of using neural-network-based learning is based on the fact that it is
suitable to learn representations of the input parameters that capture
the characteristics of the input distribution and subsequently carry
out function approximation, especially when modeling non-linear
functions [14, 30]. The topology- and memory-aware strategy is
described in the Algorithm 1. The details of the performance mod-
eling are explained in the following section.

Both the neural network and the list of topology-aware aggre-
gator sets are determined simultaneously using a set of offline mi-
crobenchmarks. The usage of the neural network warrants further
discussion (See Section 4.4.1). We estimate the execution time of
the aggregation process as a function of the number of aggregators.
Then, after pruning the possible number of aggregators based on
memory constraints, we run the neural network over each possi-
ble number of aggregators, and choose the number that is predicted
to have the minimal completion time. By estimating the comple-
tion time, the leader can perform error propagation based on the
actual time taken. Furthermore, we observed negligible computa-
tional overhead (on the order of milliseconds), even when running
multiple iterations of the neural network estimation.

4.4.1 Performance Model
The goal of the neural network-based performance model is to

accurately predict the performance of three components: the index
and low-order byte aggregation times as well as the I/O times for
DIRAQ, both with and without inverted index compression. Given
these predictions, we can apply the model on each group to de-
termine at run-time a well-performing set of aggregators. Further-
more, we focus on the BlueGene/P architecture, though our meth-
ods can be applied to other cluster architectures. Table 2 gives the
necessary parameters.

Given the BlueGene/P architecture, the DIRAQ indexing frame-
work consists of three components, namely the compute cores, the
aggregators, and the BlueGene I/O pipeline, which consists of the
I/O forwarding cores and a Myrinet switch which provides con-
nectivity to file server cores of a cluster-wide file system [25]. We
assume an aggregation group of size ρ . An aggregation group is de-
fined as a logical group of ρ compute cores (with one of them also
as the group leader) and corresponding a aggregator cores. Each
aggregation group forms an MPI communicator in our implemen-
tation. We model the aggregation and I/O process taking place in a
single aggregation group.

In order to build an accurate model, we must take into account
the RMA contention at the aggregators. To do so, we ran a set
of microbenchmarks to measure the aggregation and I/O times, for
varying parameters ρ , B, d, and a (refer to Table 2). Linear re-
gression is not suitable for modeling the non-linear relationship
tagg_io = f (ρ,d,b,a). Therefore, we used a 3-layered neural net-
work with ρ , B, d, and a as inputs, 40 neurons in the hidden layer
and the tagg_io as the output. This is further used to determine the

Table 2: Parameters for the performance model.
Fixed Input Parameters
ρ Number of compute cores per MPI communicator
e Unit element size (e.g. 32 bits for single-precision)
s Number of significant bits used in DIRAQ encoding
γ Data reduction due to indexing (= s/(8 · e))
Run-time Input Parameters
a∗ Number of aggregators per MPI communicator
d Average size of core-local data
B Average number of core-local bins
l Average local inverted index size
σ Average inverted index compression ratio
Bootstrapped Input Parameters
µw Disk write throughput per aggregator

(determined using microbenchmarks)
Output Parameters
tagg_io_index Index aggregation and I/O time (sec)
tagg_io_LOB Low-order byte aggregation and I/O time (sec)

∗ Iterated over by leader node for optimization.

optimal number of aggregators in Algorithm 1.
We collected measurements for the aggregation and I/O times for

various combinations of ρ , d, B, and a. We then trained the neural
network using the FANN neural network library [20] with a total of
630 such samples. We used a 85− 15% division into the training
and testing subsets. With this configuration, we obtained a mean
squared error of 1.15e−4 and an R2 statistic of 0.9812 on the test
data using the iRPROP training algorithm [15] and the symmetric
sigmoid (tanh) activation function. On the contrary, a simple linear
regression model resulted in a R2 statistic of 0.553.

4.4.1.1 Case 1 : Without compression.
In this case, the local layout of the index corresponding to the

target variable is first built on every compute core. Then, the local
index generation takes place which is followed by the process of
building the global index layout and transferring the index meta-
data. Note that the former is purely a computation step, while
the latter primarily involves communication between the compute
cores. The index and low-order bytes are then aggregated followed
by the initiation of the index and low-order bytes I/O operations.
During I/O, the compute cores produce the data for the next time
step and initiate the corresponding local layout generation.

The index and low-order byte aggregation steps involve the com-
pute cores writing at known offsets in the aggregator core’s memory
via one-sided RMA calls. The indexing scheme reduces the data by
about γ = s

8·e of its original size. Thus,

tagg_io_index = f (ρ, l,B,a) (1)

tagg_io_LOB = f (ρ,(1− γ)d,B,a) (2)

4.4.1.2 Case 2 : With compression.
This scenario includes an additional index compression stage. In

this case, we add the index compression phase after the local index
generation at every compute core. The low-order byte aggregation
and I/O remains the same. However, the index aggregation and I/O
take place over the compressed index. Thus,

tagg_io_index = f
(

ρ,
l
σ
,B,a

)
(3)

Using the above equations for index and low-order byte aggre-
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gation, and the values of ρ , d, and B as input, we determine the
optimal number of aggregators for both the index and low-order
bytes as the one which results in the minimum tagg_io times :

âLOB = argmin
a

tagg_io_LOB(a) (4)

âindex = argmin
a

tagg_io_index(a) (5)

4.4.2 Accuracy of Performance Model
In this section, we analyse the accuracy of the trained neural net-

work in two scenarios. One, where the model predicts the aggre-
gation and I/O times when the aggregation ratio is fixed, and the
other when model picks the aggregation ratio. This is done at the
group leader nodes, which has the necessary parameters like the
number of bins, compression ratios and access to the trained neu-
ral network to make smart decisions. Figure 5 shows the predicted
accuracy on component timings when the aggregation ratio is fixed
for 4 variables from FLASH simulation, with 1 MB of data indexed
and compressed at each core.

5. EXPERIMENTAL EVALUATION
With regards to our parallel, in situ indexing methodology, there

are three primary performance metrics we evaluate. The first, query
performance, serves two purposes: it gives a comparison between
DIRAQ and FastQuery indexes, and it underscores the need for de-
fragmented indexes to accelerate query-driven analytics. The sec-
ond, index performance, evaluates our group-wise index aggrega-
tion methodology, looking at index size, generation speed, and scal-
ability. The final metric, end-to-end time (which is broken down
stage-by-stage for better insight), evaluates the effectiveness of our
memory- and topology-aware optimizations, as based on dynamic
neural network application, as well as our methodology as a whole.

5.1 Experimental Setup
Our experiments were conducted on the “Intrepid” system at the

Argonne Leadership Computing Facility (ALCF). It is a 40K node
quad-core BlueGene/P cluster consisting of 80 TB memory deliv-
ering a peak performance of 557 TFlops. Unless otherwise spec-
ified, evaluations were done on the General Purpose Filesystem
(GPFS) [22] with the default striping parameters. Each experiment
below was repeated 5 times and the reported numbers correspond
to the median times for each of the results below. All experiments
were performed in the “VN” mode in which one MPI process is
launched on every core on the chosen set of nodes.

Before we describe the results, we would like to point out that the
GPFS storage utilization was over 96%, at the time of our evalution.
As a result, the practically observed I/O throughput (Figure 9) is
only a fraction of the theoretical maximum throughput.

We execute DIRAQ with the Sedov white-dwarf FLASH simu-
lation [11] and analyze its in situ performance on 9 different datasets
(6 single-precision and 3 double precision). However, for the sake
of brevity, we present the results on 4 datasets. Based on the dataset
entropy (Table 1), the chosen single-precision variables temp,velx,vely
can be considered representative samples of all the datasets used in
this paper. Since, the number of unique values (bins) in the in-
dex directly relates to the compression ratio we take datasets that
have low (100−200), medium (1000−5000) and high (> 10000)
number of global bins, which correspond to temp, velx, and vely,
respectively. Additionally, we choose one double precision dataset
accx as well.

Additionally, to analyze the performance of index compression
and querying across simulations, we show results on 4 datasets
from S3D combustion simulation as well. We do not include scal-
ing results from S3D in this paper, since S3D does not run on In-
trepid, and our optimizations related to topology-aware aggrega-
tions exploit BlueGene/P-specific hardware. We analyze the serial
query performance over S3D datasets on the Lens Analysis Cluster
at Oak Ridge National Laboratory. Each node of Lens consists of
four 2.23 GHz AMD Opteron quad-core processors and is equipped
with 64 GB of RAM. We run the queries over the Lustre File Sys-
tem with the default striping parameters.

5.2 Query Performance
We first demonstrate the importance of aggregation for post-

simulation query performance. Figure 6 depicts the serial query
performance of DIRAQ and FastQuery with full-precision value
retrieval (meaning exact values are returned). We use single-sided
range queries of the form var < b, where b is selected to induce
a particular query selectivity. We perform this experiment using
multiple partition sizes (that is, amounts of data indexed as a unit),
ranging from 1 MB to 1024 MB on a 2 GB dataset, while fixing
query selectivity (i.e., the fraction of data satisfying the query) at
0.1%. Note that FastQuery is constrainted to a partition size equal
to the amount of data available per variable per core, as the algo-
rithm produces a local index for on core (though all such indexes
are stored contiguously on disk). In contrast, DIRAQ can produce
larger partition sizes by increasing its aggregation ratio, even when
per-core data is low.

The figures show two trends. First, the DIRAQ indexing scheme,
being lightweight in both computation and storage, outperforms
FastQuery’s method given a particular partition size. Second, for
both methods, query performance is directly proportional to index
partition size, presumably because the number of seeks induced is
inversely proportional to the partition size, while the sizes of any
contiguous reads are reduced. This performance characteristic of
indexing in general is precisely our motivation for opting to per-
form index aggregation, rather than core-local indexing.

5.3 Indexing Performance
The performance of an indexing methodology can be considered

in numerous contexts: a storage context, a computational context,
and a scalability context. The following sections explore these con-
texts, providing a finer grain performance measure and analysis of
individual tasks in DIRAQ.
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Figure 6: Comparison of response times of DIRAQ compressed
(CII) and uncompressed (II) indexes with FastQuery, over var-
ious aggregation sizes, on queries of fixed-selectivities.

5.3.1 Index Size
Figure 7 shows the index size generated for both single-precision

FLASH variables as well as double-precision S3D variables over
256 MB of raw data. As with the query processing results, we
experiment with multiple partition sizes to ascertain the effect of
index fragmentation on index size. FastQuery’s index size, as a
proportion of the raw data, slightly increases for smaller partition
sizes, and the difference in resulting index sizes using DIRAQ is
near imperceptible. While the index metadata size increases in pro-
portion to decreasing partition sizes, the overall effect is negligible.
This means that, when considering the size of aggregation groups
in DIRAQ, overall index size can be disregarded as an optimization
parameter.

5.3.2 Indexing Speed
The core-local indexing throughput was shown in Table 1. In

this section, we instead look at end-to-end indexing performance
through scalability metrics, as well as study the stage-by-stage tim-
ing breakdown of DIRAQ with and without compression.

5.3.2.1 Scalability.
It is crucial that DIRAQ exhibit favorable scalability properties,

as it aims to index large-scale data. To this end, we have performed
both strong and weak scalability benchmarks, simulating the index-
ing of one variable during one timestep. In both benchmarks, we
keep the aggregator group size constant. In the strong scalability
experiment, the overall data size is kept constant at 2 GB, whereas
in the weak scalability experiment, the data size per core is kept
constant at 1 MB per core.

The weak scaling results vary as shown in the Figure 9. We ob-
serve that the throughput for DIRAQ with compression increases
almost linearly with the number of cores in the simulation for all
the variables, due to increasing utilization of I/O resources. We
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Figure 7: Resulting index sizes (as a % of raw data) on varying
amount of data aggregated per-core with FastQuery (FQ) and
DIRAQ (CII) indexing techniques.

compare DIRAQ with the baseline case of writing the raw simula-
tion output using MPI-I/O and POSIX file-per-process approaches,
both evaluated using the IOR benchmark. With DIRAQ we ob-
serve throughput gains of approximately 5x and 6x on the velx and
temp variables respectively, and close to a 2x improvement for the
least compressible vely variable. On the other hand, DIRAQ with-
out compression yields a similar performance as these baseline ap-
proaches. Note that, without index compression, DIRAQ writes
out 1.5x more than the original raw output, but performs compa-
rably to the other write schemes, likely due to our topology-aware
aggregation.

The strong scaling results vary as shown in the Figure 8. Under
strong scaling, the amount of data indexed per core reduces at larger
scales. While the index size generated by DIRAQ is proportional
to the input data size (Figure 7), and so remains constant, the data
movement stage now generates smaller message sizes per bin. This
slightly increases the network contention at larger scales, but since
the available I/O throughput increases as we request more cores,
and this is the dominant component, we see improvements in the
end-to-end times.

5.3.2.2 Performance Breakdown.
We breakdown the performance of DIRAQ by analyzing the ex-

ecution time of each stage in the pipeline for the 4 datasets, namely
temp, velx, vely, and accx, with and without compression. We com-
ponentize the stages of DIRAQ into Encoding, Group Layout, Ag-
gregation, and I/O.

The Encoding stage gives the total time involved in encoding the
core-local data, including the optional PForDelta compression of
the inverted index. The Group Layout involves sending the core-
local layout to the group leader, which constructs the global layout
and assigns aggregators in charge of performing I/O. The Aggrega-
tion component includes the time taken to send both the index and
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Figure 8: Strong scaling on the effective end-to-end throughput (original data size / end-to-end encoding time) on 3 FLASH simula-
tion datasets indexing a total of 2 GB, on Intrepid. PFPP (POSIX file-per-process) and MPI-IO (two-phase collective) perform raw
data writes with no overhead of indexing.
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Figure 9: Weak scaling on the effective throughput (original data size / end-to-end indexing time) for 3 FLASH simulation datasets
indexing 1 MB on each core on Intrepid. PFPP, MPI-IO performs raw data writes with no overhead of indexing.
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Figure 10: Cumulative time spent on each stage of DIRAQ for
4 datasets from FLASH simulation on Intrepid, with each pro-
cess indexing 1 MB of data using an uncompressed index (II),
and a compressed inverted index (CII).

low-order bytes to its corresponding aggregator, and the I/O com-
ponent includes the time taken to perform the I/O operation on the
aggregators, and the waiting-time on the non-aggregator processes.

Figure 10 shows the total time involved in creating aggregated
indexes for the chosen datasets, with and without compression.
Each process operates on 1 MB of data and a group, consisting
of 256 processes uses 32 aggregators (writers). In almost all the
cases, compression has a positive impact by reducing the amount
of data moved within the network and I/O. However, the time spent
in each stage of the pipeline varies with the entropy of the candi-
date dataset. For example, the time spent in the aggregation and
group layout phases of the temp variable (highly compressible) is
significantly less than the same for the vely variable (least com-

pressible). We further discuss the breakdown results for the temp
and vely variables since they are representative of the dataset en-
tropy spectrum. We observe an average case performance for the
velx and accx variables.

• Encoding: The encoding time at local cores is affected by the
number of unique bin values present in the data. The dataset
vely, which has 100x more unique bins than temp, requires
around 2x more time to complete the encoding process. Even
with the application of compression, which roughly doubles
the amount of encoding time, this stage consumes less than
5% of the total execution time.

• Group Layout: Unlike the encoding process, which is local to
each core, the group layout stage requires M:1 communica-
tion within each group for merging the bin layouts from each
process. However, the group-leader performs more work
when the dataset has a larger number of unique bins, since
calculating the offsets for each core in the group-aggregated
layout requires M-way list-merge-like operations that induce
loop branching and semi-random access. This explains why
vely has a pronounced Group Layout stage compared to the
other datasets. Activating index compression adds another
10% to the group layout time, since additional index com-
pression metadata must be communicated and merged.

• Aggregation: This step essentially converts a set of distributed,
non-contiguous, core-local views of the index/low-order bytes
into a smaller set of aggregated, contiguous segments of the
index/low-order bytes on the aggregators. To achieve this,
each process would need to make Blocal RMA calls, where
Blocal is the number of local bins at that process. For datasets
with few unique bins, very few RMA calls are required to
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cluster the index and low-order bytes by bin, which occurs
quickly on the 3D torus network.

• I/O and end-to-end times: The number of bins, and the clus-
tering factor of values determine the final compression ratio.
For example, the variable pres, and to a lesser extent f lam,
possesses little variation in the indexed values on a single
core. These datasets have indexes that are compressed by as
much 20x, and thus have≈ 22% and 35% less data to write to
disk when compared with velx and vely, respectively. When
compared with using an uncompressed inverted index, the
amount of data written is reduced by as much as 2.7x, lead-
ing to end-to-end completion times that are up to 2.2x faster.

5.4 Resource Awareness
Figure 11 shows the performance of the aggregator selection

mechanism on the dataset vely at 4096 cores. The resource-aware
aggregation algorithm chooses a well-performing number of ag-
gregators. On the hard-to-compress dataset vely, for example, the
neural network predicts within a group, 8 aggregators for the in-
dex aggregation, and 16 for the low-order bytes aggregation, as
opposed to a single, fixed aggregation ratio. Compared with static
aggregation strategies, this results in 10-25% improvement in aver-
age throughput when writing to disk. The additional benefit from
this scheme is that the variation in end-to-end times across groups
is reduced as well, thereby reducing the idle time on some groups
waiting to synchronize after I/O.

The neural net is inclined to pick a higher number of aggrega-
tors when indexes are less compressible. For other variables such
as temp, which are highly compressible, an aggregation ratio of
64:1 (4 aggregators) enables aggregator writers to avoid making
very small I/O requests to the filesystem. Because of topology-
aware aggregator placement along with an aggressive compression
scheme, aggregation times generally do not present a bottleneck
when compared with I/O times.

6. CONCLUSION
This paper describes DIRAQ, an effective parallel, in situ method

for compressing and indexing scientific data for analysis purposes
during simulation runtime. DIRAQ produces a compressed in-
dex that is significantly smaller than state-of-the-art indexes. The
combination of index compression and data reduction results in an
encoding that, in many cases, is actually smaller than the origi-
nal, unindexed data. By using a high-throughput local indexing
and compression scheme followed by an effective in network in-
dex merging and aggregation strategy, DIRAQ is able to generate
group-level indexes with minimal overhead to the simulation. For
our application, a custom aggregation scheme, along with an adap-
tive approach to choosing aggregator ratios, results in better per-
formance compared to MPI collective I/O routines. Overall, DI-
RAQ presents an analysis-efficient data encoding that is smaller
than the raw data in majority of the cases, offers faster query pro-
cessing time than current indexing schemes, and can be generated
in situ with little-to-no overhead (and possibly an I/O performance
improvement) for simulation applications.
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